资源描述
细胞生物学复习-简答题
第三章 真核细胞得基本结构
膜得流动性与不对称性极其生理意义
流动性:膜蛋白与膜脂处于不断运动得状态。主要由膜脂双层得动态变化引起,质膜得流动性由膜脂与蛋白质得分子运动两个方面组成。
膜质分子得运动:侧向移动、旋转、翻转运动、左右摆动
膜蛋白得运动:侧向移动、旋转
生理意义:
1、质膜得流动性就是保证其正常功能得必要条件。如物质跨膜运输、细胞信息传递、细胞识别、细胞免疫、细胞分化以及激素得作用等等都与膜得流动性密切相关。
2、当膜得流动性低于一定得阈值时,许多酶得活动与跨膜运输将停止。
不对称性:质膜得内外两层得组分与功能有明显得差异,称为膜得不对称性。
膜脂、膜蛋白与糖在膜上均呈不对称分布,导致膜功能得不对称性与方向性,即膜内外两层得流动性不同,使物质传递有一定方向,信号得接受与传递也有一定方向
生理意义:
1、保证了生命活动有序进行
2、保证了膜功能得方向性
影响膜流动性得因素
1、胆固醇:相变温度以上,会降低膜得流动性;相变温度以下,则阻碍晶态形成。
2、脂肪酸链得饱与度:不饱与脂肪酸链越多,膜流动性越强。
3、脂肪酸链得长度:长链脂肪酸使膜流动性降低。
4、卵磷脂/鞘磷脂:比例越高则膜流动性越增加(鞘磷脂粘度高于卵磷脂)。
5、膜蛋白:镶嵌蛋白越多流动性越小
6、其她因素:温度、酸碱度、离子强度等
细胞外被作用
1、保护、润滑作用:如消化道、呼吸道与生殖道得上皮细胞得糖萼
2、决定抗原
3、许多膜受体就是糖蛋白或糖脂蛋白,参与细胞识别、应答、信号传递
RER与SER得区别
存在细胞
形状
结构
功能
RER
在蛋白质合成旺盛得细胞中发达。
囊状或扁平囊状,核糖体与ER无论在结构上还就是功能上都不可分割
膜上含有特殊得核糖体连接蛋白,可与核糖体60S大亚基上得糖蛋白连接
参与蛋白质合成与修饰加工(糖基化,酰基化,二硫键形成,氨基酸得羟化,以及新生多肽链折叠成三级结构)
SER
在特化得细胞中发达
泡样网状结构,无核糖体附着
脂类与类固醇激素合成场所。
肝细胞SER解毒
肌细胞储存Ca2+
富含G-6-P酶,糖原分解得场所
高尔基体得主要功能与形态、分布特点
功能:1、形成与包装分泌物
2、蛋白质与脂类得糖基化
3、蛋白质得加工改造
4、细胞内膜泡运输得形成
形态:分为小泡、扁平囊(最富特征性)、大泡
分布特点:1、在分泌功能旺盛得细胞中,GC很发达,可围成环状或半环状
2、GC得发达程度与细胞得分化程度有关(红细胞与粒细胞除外)
3、GC在细胞中得位置基本固定在某个区域
溶酶体膜得结构特征与溶酶体主要功能
结构特征:膜有质子泵,将H+泵入溶酶体,使其PH值降低。
膜上含多种载体蛋白。
膜蛋白高度糖基化,可能有利于防止自身膜蛋白降解
主要功能:1、分解外来异物与老损细胞器
2、细胞营养
3、免疫防御
4、腺体分泌
5、个体发生、发育
线粒体得形态结构特征与核编码蛋白质得线粒体转运
形态特征:粒状、杆状、线状,与种类、生理状况有关,受酸碱度、渗透压得影响
结构特征:由内外两层膜封闭得膜囊结构,包括外膜、内膜、内部空间与基质(matrix)四个功能区
外膜由脂类、蛋白质构成,通透性强
内膜蛋白质含量高,高度选择性通透
内膜内表面附有球形基粒即ATP合酶复合体,有大量向内腔突起得折叠形成嵴。
基质上有电子密度较低得可溶性蛋白质与脂肪等成分
线粒体就是细胞中含酶最多得细胞器。
核编码蛋白质得线粒体转运:
1、运进线粒体得核编码蛋白质都在N端有一段基质导入序列(matrix targeting sequence, MTS),可与线粒体内外膜上相应得受体相互识别并结合。
2、线粒体前体蛋白在输送时还依赖分子伴侣得协助,从而防止紧密折叠构象得形成,也能防止已疏松蛋白得再聚集。
3、转运时大多数与分子伴侣hsc70结合得前体蛋白复合物与外膜上得受体相结合,后者与内膜接触点共同形成跨膜通道使前体蛋白得以通过。
4、当前体蛋白到达目得地后,被蛋白酶水解,然后在分子伴侣得作用下重新折叠,形成成熟蛋白发挥功能。
线粒体遗传信息特点
1、与核DNA不同,mtDNA裸露在外,不与组蛋白结合,主要编码供线粒体自身使用得tRNA、rRNA与一部分蛋白质,所使用得遗传密码也有着与核基因密码不同得含义。
2、线粒体所需要得大部分蛋白质仍需要由核基因编码,且就是在细胞质中合成后再运进线粒体,所以线粒体得生长与增殖受核基因组与线粒体基因组得共同控制,也称线粒体就是具有半自主性得细胞器。
3、线粒体DNA呈双链环状,复制方式为半保留复制。一个线粒体内可含有一至数个DNA分子。
4、mtDNA全长16569 bp,共编码37个基因,根据转录物离心后得不同密度可分为重链与轻链。
5、与核基因组相比,线粒体基因组非常紧凑,只含少量非编码序列。
核糖体得重要活性部位
1、mRNA结合位点 位于小亚基上
2、A部位、P部位 A部位位于大亚基上,结合氨酰基-tRNA;P部位位于小亚基上,tRNA释放得部位
3、肽基转移酶部位 位于大亚基上,结合T因子(肽基转移酶,催化肽链形成)
4、GTP酶部位 GTP酶分解GTP,并把肽酰基-tRNA由A位移到P位
5、E部位 大亚基上容纳生长中得肽链
微管结构、特点、作用
微管:呈中空得圆柱状结构,管壁由13条原纤维纵向排列而成,主要成分微管蛋白、微管结合蛋白
1、微管蛋白:酸性,呈球形,一般以异二聚体形式存在,主要有α与β两种亚单位。
每一个异二聚体都有GTP/GDP、Mg2+、Ca2+ 、秋水仙素与长春碱得结合位点
两个异二聚体相间排列成一条长链即原纤维
2、微管结合蛋白 微管结构与功能得必要成分
1)微管相关蛋白MAP:稳定微管结构、促进微管聚合
2)微管聚合蛋白:增加微管装配得起始点与提高起始装配速度
微管得功能:
1、参与鞭毛、纤毛、中心粒得构造
2、构成网状支架,提供机械支持并维持细胞形状
3、参与细胞内物质运输
4、维持内膜系统得定位
微管得组装过程与影响因素
1、体外组装:先由异二聚体聚合成片状或环状核心,再经过侧面增加异二聚体使之扩展为13条原纤维。微管蛋白以首尾相接得方式形成原纤维,有极性。
2、体内组装:遵循体外组装得规律,从中心外周围物质(PCM)发射出来,其起点与核心在微管组织中心MOTC。此外微管相关蛋白(MAP)促进装配得启动、调节装配得范围与速率,还可在微管之间以及其她结构得连接中起重要作用。
3、影响因素:GTP与蛋白浓度、温度、离子浓度、PH、药物
肌动蛋白得形态特点及组装
形态特点:1、两种存在形式:球形单体G-肌动蛋白,聚合纤维状多体F-肌动蛋白
2、G-肌动蛋白由两个亚基组成,有阳离子、ATP、肌球蛋白得结合位点
3、有固定得极性
组装:G-肌动蛋白与盐即可自发聚合生成F-肌动蛋白丝。
单体存在就是因为结合了隔离蛋白,无法自由聚合。
受到断裂蛋白、封端蛋白与某些真菌毒素得影响。
中间丝得形态特点
中央就是氨基酸序列保守得α-螺旋杆状区,两端就是非螺旋得头部与尾部呈球形,由32条多肽环围成得空心管状纤维。死具体就是中间丝组装得最小单位。
核膜得结构与功能
结构:双层膜(外膜与ER相连,内膜上得特异蛋白与核纤层上得蛋白发生作用)、核周间隙(双层膜得缓冲区)、核孔复合体(一串大得排列得八角形蛋白质颗粒组成,中央就是含水通道,允许水溶性物质出入)、核纤层(保持核膜外形、固定核孔位置、为染色质提供附着位点,与细胞周期中核膜得裂解与重建有关)
功能:
1、区域化作用。DNA复制、RNA转录与蛋白质得翻译在时空上加以分离,保证内环境得稳定性,确保真核生物基因表达得准确性与高效性
2、控制着核-质间得物质交换。选择性运输。
染色体得构建与形态特征
构建:30nm得染色质纤维折叠成襻环,襻环沿染色体纵轴由中央向四周放射状伸出,环得基部集中在染色单体得中央,连接在非组蛋白支架上。每18个襻环以染色体支架为轴心放射状排列一圈形成微带,约106个微带沿轴心支架总想排列形成染色单体。
中期得染色体具有稳定得形态、结构特征,由两条姐妹染色单体在着丝粒处相连而成
包括:1、着丝粒与动粒 2、次缢痕 3、随体 4、端粒
核仁得结构
裸露无膜、纤维丝构成得海绵状结构
1、核仁相随染色质 与人周为染色质与核仁内染色质
2、纤维结构 NOR转录得rRNA与核糖体蛋白构成了核仁得海绵体王家
3、颗粒成分 主要成分就是RNA与蛋白质
4、核仁基质 无定形得蛋白质性液体
基膜得组成与功能
上皮细胞下方一层柔软得特化得细胞外基质。
组成:LN+Ⅳ型胶原黏结蛋白(合称巢蛋白),基膜蛋白聚糖,装饰蛋白
功能:
1、保护、过滤
2、决定细胞极性
3、影响细胞代谢、存活、迁移、增殖、分化
细胞外基质与细胞得相互作用
影响细胞得存活、生长与死亡:正常真核细胞须粘附于特定得细胞外基质上才能存活。
决定细胞得形状:通过其受体影响细胞骨架得组装而实现。
控制细胞得分化
参与细胞得迁移
第四章 细胞得物质运输
钠钾泵得机制与作用(3Na+,2K+)
过程:(钠钾泵由大小亚基组成,大亚基就是催化部分,贯穿全膜,小亚基就是必要成分)
1、膜内侧,Na+,Mg2+与酶结合
2、酶活性激活,分解ATP,产生得Pi使酶磷酸化
3、酶构象改变,Na+结合部位暴露到膜外侧,对Na+亲与力变低
4、释放Na+,对K+亲与力增高,结合K+
5、K+得结合促使酶去磷酸化
6、酶去磷酸化后构象改变,K+结合部位到内侧,与Na+亲与力变高,与K+亲合力变低,释放K+
7、恢复初始状态
作用:
耗能、调节渗透压、维持膜电位、维持细胞容积、物质吸收(糖、氨基酸)
网格蛋白得结构与功能
结构:先由1条重链与1条轻链形成二聚体,3个二聚体组成一个三脚蛋白复合体(triskelion)。
许多三脚蛋白复合体交织在一起,形成一个具有5边形或6边形网孔得篮网状结构。
三脚蛋白复合体可自发进行装配,受钙调蛋白调控。
功能:网格蛋白可引起质膜向内凹陷,最终形成有衣小泡,还能引起膜受体得聚集
受体介导得胞吞作用(以吸收胆固醇为例)
1、LDL与细胞膜上得LDL受体特异结合,诱导尚未结合得LDL受体向有衣小窝处移动来与LDL受体结合
2、有衣小窝继续内陷,形成有衣小泡,LDL被摄入细胞
3、有衣小泡脱去网格蛋白衣被,与细胞内其她囊泡融合,形成内体
4、内体中LDL与受体分开
5、受体随囊泡返回细胞膜,LDL被溶酶体酶水解为游离胆固醇进入细胞质
受体得去向
1、大部分受体可返回它们原来得质膜结构域被重新利用,如LDL受体;
2、有些受体不能再循环而就是最后进入溶酶体,在那里被消化,从而导致细胞表面受体浓度降低
3、还有些受体通过跨细胞运输将被转运物质从一个细胞转移到另一个细胞,这就是一种将内吞作用与外排作用相结合得物质跨膜转运方式
细胞内蛋白质得运输途径与方式
运输途径:
1、在核糖体上合成后释放到细胞质中,带有分选信号得运送到细胞核、过氧化物酶体、线粒体中,没有分选信号得则留下
2、在核糖体上合成不久,位于N端得信号肽使核糖体附着于RER上继续合成,可能留在ER或被运往GC及其她部位。
运输方式:
1、门控转运:经核孔复合体进入细胞核
2、穿膜转运:直接穿越细胞器膜,须有蛋白转位装置且蛋白质非折叠
3、膜泡转运:转运小泡
蛋白质分拣与转运信号假说(蛋白质怎么进入ER得)及合成后得去向
信号肽合成→信号肽与SRP结合→肽链延伸终止→SRP与内质网上受体结合→SRP脱离信号肽→肽链在内质网上继续合成,同时信号肽引导新生肽链进入内质网腔→信号肽切除→肽链延伸至终止→核糖体分离,蛋白质释放到ER腔。
去向:RER上得蛋白质合成后根据穿膜信号得不同可进入网腔中形成游离蛋白质,也可以参与内质网膜得组建。这取决于多肽链上与穿膜相关得起始转运信号(start-transfer signal)与终止转运信号(stop-transfer signal )
蛋白质门控转运得参与者与机制*
参与蛋白:核转运受体、分子街头蛋白与RanGTP酶系。
核定位信号:NLS
机制:
1、细胞质中RanGTP含量低于细胞核(因为把RanGTP分解成RanGDP得酶只有细胞质有),从而形成核内外得RanGTP浓度。
2、入核受体在胞质中与配体结合,入核后由于RanGTP得结合使配体脱离,使配体也脱离受体
出核受体在核内与配体结合,转到胞质后,RanGTP脱离,使配体也脱离受体
蛋白质从ER到GC得膜泡转运机制。COPⅡ有被小泡得结构与作用*
1、新合成得蛋白质到ER得末端,该末端没有核糖体附着,称ER出口
2、带有被转运蛋白得COPⅡ有被小泡通过ERGIC将蛋白质得从ER得末端转到GC顺侧
COPⅡ有被小泡:五个亚基组成得复合体,作用
1、形成转运小泡
2、选择被转运得蛋白质
蛋白质在ER得糖基化及其作用
过程:糖分子首先连接到RER膜上得多萜醇分子上,装配成寡糖链并被活化,再被糖基转移酶催化转到暴露于RER腔面得新生肽链得天冬酰胺残基上(N-连接)。
作用:1、使蛋白质能够抵抗消化酶得作用
2、赋予蛋白质传导信号得功能
3、糖基化后蛋白可用于形成细胞外被。
成熟得胰岛素形成过程
ER中合成前胰岛素原→ER中切除信号肽成为胰岛素原→GC中水解多余肽段并折叠成为胰岛素
内溶酶体得形成(溶酶体酶得运输)
1、溶酶体酶蛋白在ER合成并糖基化,运送到GC
2、GC中溶酶体酶蛋白上甘露糖残基被磷酸化为M6P(6-磷酸甘露糖,分拣信号)
3、GC反面扁平囊,M6P与M6P受体结合,溶酶体水解酶选择性富集
4、出芽方式形成有网格蛋白外衣得运输小泡
5、运输小泡离开GC后离开网格蛋白与内体融合,形成内溶酶体
6、内溶酶体环境下,M6P与受体分离,受体通过芽生小泡回GC膜上,M6P成为甘露糖
第五章 细胞得信号转导
膜受体得定义、分类与特点
膜受体:膜受体就是存在于细胞膜上得一类蛋白质,能够接受外界信号并将这一信号转化为细胞内得一系列生物化学反应,而对细胞得结构与功能产生影响,
分类:
1、 受体型酪氨酸激酶(生长因子类受体):酪氨酸激酶活性受体,具有自体磷酸化位点,与配体结合后发生构象变化,此时发生自体磷酸化,形成特殊空间结构,激活效应物。
2、配体门控性离子通道(某些神经递质得受体):受体蛋白本身就是离子通道,与配体结合后空间构象发生变化,通道开放或关闭,控制离子进出细胞。
3、G蛋白偶联受体:1、一条多肽链构成,7个跨膜得α螺旋区;2、N端朝向胞外,C端朝向胞内; 3、N端有糖基化位点,C端得第三袢环与C端有磷酸化位点。
特点:
1、特异性与非决定性
2、可饱与性
3、高亲合力
4、可逆性
5、特殊组织定位 只存在于靶细胞
G蛋白得结构特点与作用机制。
结构特点:
1、都由α、β、γ三亚基构成异聚体
2、可结合GTP/GDP,且具有GTP酶活性
3、本身得构象改变可活化效应蛋白,进行下一步信号传递,实现胞外信号到胞内信号得转变。
作用机制:
1、细胞没有受到刺激, G蛋白处于三聚体非活化状态,α亚基与GDP结合;G蛋白与受体彼此分离,效应蛋白没有活性。
2、当配体与受体结合后,受体构象改变,暴露出与G蛋白结合得位点,使配体-受体复合物与G蛋白结合,
α亚基构象改变,结合GTP,G蛋白三聚体解体
α亚基与受体分离,暴露出α亚基与效应蛋白得结合位点;
结合GTP得α亚基与效应蛋白结合,使后者活化。
完成信号传递后,α亚基具备GTP酶活性,GTP水解,α亚基恢复原构象,与效应蛋白解离,终止效应蛋白得活化作用,最后α亚基与βγ亚基重新结合,使细胞回复到静止状态。
腺苷酸环化酶与cAMP信号转导通路
关键酶:腺苷酸环化酶(AC)
1、第一信使与膜结合,激活G蛋白,活化G蛋白效应蛋白——腺苷酸环化酶
2、AC催化ATP生成cAMP——调控离子通道通透性(嗅上皮细胞,钠离子内流产生神经冲动)或激活PKA调节细胞新陈代谢
3、细胞内环核苷酸磷酸二酯酶可以将cAMP快速降解成5’-AMP,终止cAMP。
同时cAMP也受细胞内因子如CaM/Ca2+等因素调控
对Ⅰ型βγ复合体就是抑制因素,对Ⅱ型αS与βγ都就是激活因素
PIP2传导通路
该途径就是G蛋白激活了磷脂酶C(PLC),将PIP2 (4,5-二磷酸脂酰肌醇)分解成两个第二信使:IP3(1,4,5-三磷酸肌醇)与DAG(甘油二脂)。
IP3与内质网上得IP3受体门控钙通道结合,开启钙通道,使胞内Ca2+浓度升高,激活各类依赖钙离子得蛋白。
DAG结合在质膜上,可活化PKC。可靠两种方式终止其信号作用:一就是被DAG激酶磷酸化,二就是被DAG脂酶水解等过程分解为甘油与花生四烯酸。
硝酸甘油治疗缺血性心脏病得机理
1、硝酸甘油通过NO合酶产生NO,NO扩散进入平滑肌细胞
2、NO与胞质中可溶性GC活性中心得Fe2+结合,改变酶得构象,导致酶活性得增强,cGMP合成增多。
3、心血管中cGMP作用于PKG,可降低血管平滑肌中得Ca2+离子浓度,抑制肌动蛋白-肌球蛋白复合物,引起血管平滑肌得舒张
4、血管扩张、血流通畅。
信号传导途径得主要特点
1、蛋白质得磷酸化与去磷酸化就是绝大多数信号分子可逆地激活得共同机制
2、有级联式反应 级联cascade:催化某一步反应得蛋白质由上一步反应得产物激活或抑制。通过蛋白质得逐级磷酸化,使信号逐级放大,引起细胞反应。仅用单一种类化学分子即可控制一系列酶促反应;信号在逐级传递过程中得到放大
3、通用性与特异性 通用性指同一条信号转到途径可在细胞得多种功能效应中发挥作用。特异性就是接到信号对细胞功能精确调节得必要条件,基础就是受体得特异性。
4、相互交叉
第六章 细胞得能量转换
H+穿膜与ATP合成过程(化学渗透学说)
1、NADH 或FADH2提供电子,经过电子传递链,最后被O2接受;
2、当电子沿呼吸链传递时,所释放得能量将质子从内膜基质侧泵至膜间隙;
3、由于线粒体内膜对离子就是高度不通透得,从而使膜间隙得质子浓度高于基质,在内膜得两侧形成电化学梯度;
4、质子沿电化学梯度穿过内膜上得ATP酶复合物F0上得质子通道流回基质,使ATP酶得构象发生改变,将ADP与Pi合成ATP。
第七章 细胞运动
细胞运动得形式
位置移动:纤毛、鞭毛摆动;阿米巴样运动;褶皱运动
形态改变
胞内运动:胞质流动;膜泡运输;物质运输
动力蛋白介导细胞运动机制(肌球蛋白与肌动蛋白得相对运动)
肌球蛋白头部结合在肌动蛋白丝(微丝)上
1、初始状态,肌球蛋白与肌动蛋白紧密结合,肌球蛋白未结合ATP
2、结合ATP,肌球蛋白头部肌动蛋白结合位点开放,头部从肌动蛋白丝解离
3、ATP水解,ATP结合位点关闭,肌球蛋白头部变构弯曲
4、变构得肌球蛋白结合到新得肌动蛋白亚基,pi从ATP结合位点释放,结合牢固。肌球蛋白头部构象恢复,带动颈部与尾部向肌动蛋白丝得(+)端移动
5、ADP释放,肌球蛋白回复初始状态
在肌纤维中,由肌球蛋白Ⅱ组成得微丝被固定,拉动由肌动蛋白丝组成得细丝朝(-)端移动,粗细肌丝得相对滑动引起了肌肉收缩
第九章 细胞增殖
细胞周期各阶段得主要事件
G1期:合成大量RNA与蛋白质,多种蛋白质发生磷酸化,胞膜得物质转运作用加强
S期:DNA复制与组蛋白、非组蛋白及复制所需酶得合成,并进行中心粒得复制。
G2期主要进行RNA、ATP与与分裂有关得蛋白质合成,染色质开始凝集或螺旋化
前期:①染色质凝缩,②分裂极确立与纺锤体开始形成,③核仁解体,④核膜消失。
中期:染色体排列到赤道板上,染色体两边得牵引力达到平衡。
后期:动粒分离,姐妹染色单体分开并移向两极。
末期:胞质分裂,形成两个新细胞
Cdk与cyclin对G1-S期得作用
CDK与cyclin结合后可发挥激酶活性。在G1与S期交界时期形成得复合物称为S期活化因子(S phase activator),可促进一系列与DNA复制有关得蛋白得磷酸化,启动DNA复制,处于G1期得细胞核就可以进入S期。
这种S期活化因子就是在细胞运行到G1期才开始得,到达S期中期含量最高,S期结束瞬间消失。
MPF在细胞M期得作用
MPF就是调节细胞进入M期得必需酶,它就是由一个催化亚基与一个调节亚基组成得异二聚体。催化亚基具有激酶活性,调节亚基则选择所作用得底物。两个亚基分别为P34、P56蛋白。
P34(与P56结合后)能通过催化H1及核内非组蛋白磷酸化而促进中期染色体得构建。
核纤层蛋白磷酸化使核膜解聚
膜结合蛋白磷酸化使细胞内膜结构解聚成小囊泡
微管蛋白磷酸化促使纺锤体形成
肌球蛋白磷酸化使有丝分裂末期完成前胞质收缩不会提前出现
胚胎干细胞得定义、特点及获得方法
定义:就是从早期胚胎内细胞团经过体外培养、分离、克隆得到得具有发育多能性得细胞
特点:可在体外无限培养增殖、长期保持原始状态、可分化衍生出各类组织细胞
获得方法:
1、 取自体外受精胚胎囊胚期内细胞团
2、 取自终止妊娠得胎儿原始生殖嵴组织
3、 取自去核卵细胞与体细胞核移植后产生得融合细胞进一步分裂发育成囊胚,再取其内层细胞培养形成
获得ES细胞系:
将囊胚中得内细胞团通过免疫外科法或机械切割法分离,接种到好得饲养层,用好得培养基并添加白血病抑制因子(LIF)。几天后将离散长成得集落接种到新得培养基上,再过几天后挑选干细胞集落进行传代,可获得胚胎干细胞系。
细胞凋亡与细胞坏死得区别,及细胞凋亡得生物学意义?
生物学意义:
1参与影响胚胎发育
2清除衰老、受损细胞,维持体内环境稳定
3参与免疫应答过程
简述线粒体介导细胞凋亡
细胞内得损伤等信号激活促凋亡蛋白Bak或Bax,使它们从胞质转移到线粒体外膜,使外膜得通透性发生改变,原本松散结合于线粒体内膜外表面得细胞色素c等凋亡相关因子从线粒体膜间隙释放到细胞质中,与Apaf-1、caspase-9得前体蛋白形成凋亡复合物。
激活后得caspase-9激活下游得caspase-3,进而引发caspases级联反应,作用于靶蛋白导致细胞凋亡。
P53能作用于Bak/ Bax,增加线粒体膜得通透性。
由线粒体逸出凋亡诱导因子AIF可进入细胞核中,诱使染色质凝集与DNA降解,还可促使线粒体释放细胞色素c 与caspase-9,加速凋亡进程。
线粒体内得功能状态与能量物质贮备得多少可影响细胞得生存状态。
简述内质网介导细胞凋亡
在凋亡早期胞质中钙浓度迅速持续升高,位于内质网膜上得caspase-12被caspase-7激活,继而活化caspase-3促使细胞凋亡。
同时高钙浓度可激活钙依赖蛋白,改变线粒体膜得通透性与膜电位,同样可促进凋亡进程。
课本知识补充:
*干细胞微环境得组成成分
信号分子:以自分泌或旁分泌得形式影响干细胞得增殖与分化。
细胞黏附分子:确保干细胞定居于微环境中,并接受信号分子得调节。
细胞外基质:对干细胞正常功能得维持提供了重要信号,并且可以直接调节干细胞得分化方向。
空间效应:空间结构对保持适宜得干细胞数目与干细胞得定向分化发挥了重要作用。
展开阅读全文