收藏 分销(赏)

高一数学下学期期末试题(共4套-含参考答案).pdf

上传人:二*** 文档编号:4405118 上传时间:2024-09-18 格式:PDF 页数:60 大小:3.10MB
下载 相关 举报
高一数学下学期期末试题(共4套-含参考答案).pdf_第1页
第1页 / 共60页
亲,该文档总共60页,到这儿已超出免费预览范围,如果喜欢就下载吧!
资源描述

1、1 第二学期末检测高一数学试题第卷(共 60 分)一、选择题:本大题共12 个小题,每小题 5 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.集合21Axx,0 xxB,则AB()A2xx B0 xx C10 xx D12xx2.0000sin75 sin15cos75 cos15的值为()A1 B0 C21 D233.已知直线01ayax与直线021yx平行,则a的值是()A1 B1 C2 D24.已知向量3,1,2,1ba,则()Aba Bba/C.baa Dbaa/5.某路段检查站监控录像显示,在某时段内,有1000辆汽车通过该站,现在随机抽取其中的200辆汽

2、车进行车速分析,分析的结果表示为如下图的频率分布直方图,则估计在这一时段内通过该站的汽车中速度不小于hkm/90的约有()A100辆 B200辆 C.300辆 D400辆6.执行如图所示的程序框图,输出的S值为()2 A2 B4 C.8 D167.点0,2关于直线4xy的对称点是()A6,4 B4,6 C.7,5 D5,78.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体的表面积是()A12 B284 C.248 D2449.如图,在ABC中,点D在BC边上,且DBCD3,点E在AD边上,且AEAD3,则用向量CACB,表示CE为()ACACBCE3241 BCAC

3、BCE3294C.CACBCE3241 DCACBCE329410.“勾股定理”在西方被称为“毕达哥拉斯定理”,三国时期吴国的数学家赵爽创制了一幅“勾股圆方图”,用数形结合的方法给出了勾股定理的详细证明,如图所示的“勾股圆方图”中,四个相同的直角三角形与中间的小正方向拼成一个边长为2的大正方形,若直角三角形中较小的锐角6,现在向该正方形区域3 内随机地投掷一枚飞镖,飞镖落在小正方形内的概率是()A231 B23 C.434 D4311.已知以下四个结论:函数xytan图像的一个对称中心为0,2;函数1sin xy的最小正周期为;32sinxy的表达式可以改写为xxf267cos;若4BA,则.

4、2tan1tan1BA其中,正确的结论是()A B C.D12.已知函数2,0,0sinAxAxf,在一个周期内图像如图所示,若21xfxf,且65,12,21xx,21xx,则21xxf()A3 B2 C.3 D2第卷(共 90 分)二、填空题(每题5 分,满分 20 分,将答案填在答题纸上)13.已知函数0,0,1xexxxfx,则30ff4 14.甲、乙两名运动员的5次测试成绩如图所示,以这5次测试成绩为判断依据,则甲、乙两名运动员成绩稳定性较差的是(填“甲、乙”)15.若直线42xky与圆4122yx相切,则实数k16.如图所示,摩天轮的半径为40米,点O距地面高度为50米,摩天轮做匀

5、速运动,每3分钟转一圈,以点O为原点,过点O且平行与地平线的直线为x轴建立平面直角坐标系xOy,设点P的起始位置在最低点(且在最低点开始时),设在时刻t(分钟)时点P距地面的高度h(米),则h与t的函数关系式th在摩天轮旋转一周内,点P到地面的距离不小于70米的时间长度为(分钟)三、解答题(本大题共 6小题,共 70 分.解答应写出文字说明、证明过程或演算步骤.)17.已知5,2,1,0,0,1CBA,求:()ACAB2;().cosBAC18.已知函数.,42sin2Rxxxf()求xf的最小正周期和单调递增区间;()说明函数Rxxxf,42sin2的图像可由正弦曲线xysin经过怎样的变化

6、得到;()若,2382f是第二象限的角,求.2sin19.某商店为了更好地规划某种商品进货的量,该商店从某一年的销售数据中,随机抽取了8组数据作为研5 究对象,如下图所示(x(吨)为该商品进货量,y(天)为销售天数):()根据上表数据在下列网格中绘制散点图:()根据上表提供的数据,求出y关于x的线性回归方程axby;()根据()中的计算结果,若该商店准备一次性进货该商品24吨,预测需要销售天数;参考公式和数据:1221,.niiiniix ynxybayb xxnx.241,356,32,48818128181iiiiiiiiiyxxyx20.如图,在三棱柱111CBAABC中,底面ABC是等

7、边三角形,且1AA平面ABC,D为AB的中点,()求证:直线/1BC平面CDA1;6()若EBBAB,21是1BB的中点,求三棱锥CDEA1的体积;21.已知圆心在原点的圆被直线1xy截得的弦长为.14()求圆的方程;()设动直线01 kxky与圆C交于BA,两点,问在x轴正半轴上是否存在定点N,使得直线AN与直线BN关于x轴对称?若存在,请求出点N的坐标;若不存在,请说明理由;22.已知函数.2cos2sinxxxf()求证:xfxf47;()若对任意的4,0 x,使得012kxf有解,求实数k的取值范围;()若85,0 x时,函数122xmfxfxg有四个不同零点,求实数m的取值范围;7

8、试卷答案一、选择题1-5:ACDCC 6-10:CACAA 11、12:BA二、填空题13.1 14.甲 15.125 16.(1)0,32cos4050ttth;(2)1三、解答题17.解:()7,12,5,1,1,1ACABACAB所以,.252ACAB()62,2 ACAB4ACAB43cos32 26AB ACBACABAC18.解:()由2sin24fxx可知,函数的最小正周期为22T令42xu,则uysin2的增区间是Zkkk22,22,由224222kxk,解得.,883Zkkxk所以函数xf的单调递增区间是.8,83Zkkk()将xysin和图像纵坐标不变,横坐标为原来的21倍

9、得到xy2sin的图像,将xy2sin和图像向左平移8得到42sinxy的图像,将42sinxy的图像横坐标不变,纵坐标为原来的2倍得到42sin2xxf的图像或,将xysin和图像向左平移4,得到4sin xy的图像,将4sin xy纵坐标不变,横坐标为原来的21得到42sinxy的图像,将42sinxy图像横坐标不变,纵坐标为原8 来的2倍得到42sin2xxf的图像.()由42sin2xxf知,所以23sin282f,即43sin,又是第二象限的角,所以413431sin1cos22,所以839413432cossin22sin19.解:()散点图如图所示:()依题意,,61198654

10、3281x,4865432181y,356121816436251694812iix,2418854402415126281iiiyx,684968356468241882812281iiiiixxxyyxb,3411668494a回归直线方程为.34116849xy()由()知,当24x时,,173411246849y即若一次性买进蔬菜24吨,则预计需要销售约17天.9 20.解:()连接1AC交于点F,则F为1AC的中点,又D为AB的中点,所以DFBC/1,又1BC平面CDA1,又DF平面CDA1,所以/1BC平面CDA1.()三棱锥CDEA1的体积11113ACDECA DEA DEVV

11、Sh,其中点C到平面11AABB的距离3CDh,又23212111212121221DEAS,所以.233233131111hSVVDEADEACCDEA21.解:()圆心0,0到直线1xy的距离21d,由圆的性质可得4214222dr,所以,圆的方程为422yx;()设2211,0,yxByxAtN,由1422xkyyx得,04212222kxkxk,所以.14,1222212221kkxxkkxx若直线AN与直线BN关于x轴对称,则02211txytxyKKBNAN,即021201121212211txxtxxtxxktxxk10.4021121422222ttktkkk所以当点N为0,4

12、时,直线AN与直线BN关于x轴对称;22.解:()xxxxxf2cos2sin227cos227sin47所以,xfxf47()42sin22cos2sinxxxxf1,142sin2,22,2242sin,4,0 xxx012kxf,即3,12xfk()令xft,因为85,0 x,所以,2,1t,函数122xmfxfxg有四个不同零点等价于122mttth在2,0t有两个不的零点由根的分布知识可得:0200200hhm,解得:2431m.11 广东省广州市荔湾区高一(下)期末数学试卷一、选择题:本大题共12 小题,每小题5 分,共 60 分,在每小题所给的四个选项中,只有一个是正确的1与 6

13、0 角的终边相同的角是()A300 B240 C 120 D 602不等式 x2y+40 表示的区域在直线x2y+4=0的()A左上方B左下方C右上方D右下方3已知角 的终边经过点 P(3,4),则 cos 的值是()A B C D4不等式 x23x100 的解集是()A x|2x5B x|x5 或 x2Cx|2x5D x|x5 或 x25若 sin=,是第四象限角,则cos(+)的值是()ABCD6若 a,bR,下列命题正确的是()A若 a|b|,则 a2b2B若|a|b,则 a2b2C若 a|b|,则 a2b2D若 ab,则 ab07要得到函数 y=3sin(2x+)图象,只需把函数y=3

14、sin2x图象()A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位8已知 M 是平行四边形 ABCD的对角线的交点,P为平面 ABCD内任意一点,则+等于()A4 B3C 2D9若 cos2=,则 sin4+cos4的值是()ABC D10已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是()A4 B2 C 2 D12 11已知点(n,an)在函数 y=2x13 的图象上,则数列 an的前 n 项和 Sn的最小值为()A36 B36 C6 D612若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则 m 的范围是()A(1,2)B(2,+)C

15、3,+)D(3,+)二、填空题:本大题共4 小题,每小题 5 分,满分 20 分.把答案填在答题卡上.13若向量=(4,2),=(8,x),则 x 的值为14若关于 x 的方程 x2mx+m=0 没有实数根,则实数m 的取值范围是15已知 x,y 满足,则 z=2x+y 的最大值为16设 f(x)=sinxcosx+cos2x,则 f(x)的单调递减区间是三、解答题:本大题共6 小题,满分 70分解答应写出文字说明,证明过程或演算步骤17已知等比数列 an的前 n 项和为 Sn,公比为 q(q1),证明:Sn=18已知平面向量,满足|=1,|=2(1)若与 的夹角=120,求|+|的值;(2)

16、若(k+)(k ),求实数 k 的值19在 ABC中,内角 A,B,C的对边分别为 a,b,c,已知 c=acosB+bsinA(1)求 A;(2)若 a=2,b=c,求 ABC的面积13 20已知数列 an 的前 n 项和为 Sn,且 a1=2,an+1=Sn(n=1,2,3,)(1)证明:数列 是等比数列;(2)设 bn=,求数列 bn 的前 n 项和 Tn21某电力部门需在A、B 两地之间架设高压电线,因地理条件限制,不能直接测量A、B 两地距离现测量人员在相距km 的 C、D两地(假设 A、B、C、D在同一平面上)测得 ACB=75 ,BCD=45 ,ADC=30 ,ADB=45 (如

17、图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B 距离的倍,问施工单位应该准备多长的电线?22已知 A,B,C为锐角 ABC的内角,=(sinA,sinBsinC),=(1,2),(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;(2)求 tanAtanBtanC的最小值14 广东省广州市荔湾区高一(下)期末数学试卷参考答案与试题解析一、选择题:本大题共12 小题,每小题5 分,共 60 分,在每小题所给的四个选项中,只有一个是正确的1与 60 角的终边相同的角是()A300 B240 C 120 D 60【考点】G2:终边相同的角【分析】与6

18、0 终边相同的角一定可以写成k360 60 的形式,kz,检验各个选项中的角是否满足此条件【解答】解:与 60 终边相同的角一定可以写成k360 60 的形式,kz,令 k=1 可得,300 与60 终边相同,故选:A2不等式 x2y+40 表示的区域在直线x2y+4=0的()A左上方B左下方C右上方D右下方【考点】7B:二元一次不等式(组)与平面区域【分析】根据题意,作出直线 x2y+4=0的图形,分析可得原点在直线右下方,将原点坐标(0,0)代入 x2y+4,分析即可得答案【解答】解:根据题意,作出直线x2y+4=0,分析可得:原点(0,0)在直线右下方,将原点坐标(0,0)代入 x2y+

19、4 可得,x2y+40,故不等式 x2y+40 表示的区域在直线 x2y+4=0 的右下方;故选:D15 3已知角 的终边经过点 P(3,4),则 cos 的值是()A B C D【考点】G9:任意角的三角函数的定义【分析】由题意利用任意角的三角函数的定义,求得cos 的值【解答】解:角 的终边经过点 P(3,4),x=3,y=4,r=|OP|=5,则 cos=,故选:C4不等式 x23x100 的解集是()A x|2x5B x|x5 或 x2Cx|2x5D x|x5 或 x2【考点】74:一元二次不等式的解法【分析】把不等式化为(x+2)(x5)0,求出解集即可【解答】解:不等式 x2x20

20、 可化为(x+2)(x5)0,解得 x2或 x5,不等式的解集是 x|x2 或 x5 故选:D5若 sin=,是第四象限角,则cos(+)的值是()ABCD16【考点】GI:三角函数的化简求值【分析】利用同角三角函数的基本关系,两角和的余弦公式,求得cos(+)的值【解答】解:sin=,是第四象限角,cos=,则 cos(+)=coscos sinsin=?()=,故选:B6若 a,bR,下列命题正确的是()A若 a|b|,则 a2b2B若|a|b,则 a2b2C若 a|b|,则 a2b2D若 ab,则 ab0【考点】R3:不等式的基本性质【分析】根据题意,由不等式的性质易得A 正确,利用特殊

21、值法分析可得B、C、D 错误,即可得答案【解答】解:根据题意,依次分析选项:对于 A、若 a|b|,则有|a|b|0,则 a2b2,故 A 正确;对于 B、当 a=1,b=2 时,a2b2,故 B错误;对于 C、当 a=1,b=1时,满足 a|b|,但有 a2=b2,故 C错误;对于 D、若 ab,则 ab0,故 D 错误;故选:A7要得到函数 y=3sin(2x+)图象,只需把函数y=3sin2x图象()A向左平移个单位B向右平移个单位C向左平移个单位D向右平移个单位【考点】HJ:函数 y=Asin(x+)的图象变换【分析】由题意利用函数 y=Asin(x+)的图象变换规律,得出结论【解答】

22、解:把函数 y=3sin2x图象向左平移个单位,可得 y=3sin2(x+)=3sin(2x+)的图象,故选:C17 8已知 M 是平行四边形 ABCD的对角线的交点,P为平面 ABCD内任意一点,则+等于()A4 B3C 2D【考点】9A:向量的三角形法则【分析】根据向量的三角形的法则和平行四边形的性质即可求出答案【解答】解:M 是平行四边形 ABCD的对角线的交点,P为平面 ABCD内任意一点,=+,=+,=+,=+,M 是平行四边形 ABCD对角线的交点,=,=,+=+=4,故选:A9若 cos2=,则 sin4+cos4的值是()ABC D【考点】GH:同角三角函数基本关系的运用【分析

23、】利用同角三角函数的基本关系、二倍角的余弦公式,求得sin2和 cos2 的值,可得sin4+cos4的值【解答】解:cos2=2cos2 1=,cos2=,sin2=1 cos2=,则 sin4+cos4=+=,故选:A10已知直角三角形的两条直角边的和等于4,则直角三角形的面积的最大值是()A4 B2 C 2 D【考点】3W:二次函数的性质;7F:基本不等式18【分析】本题考查二次函数最大(小)值的求法设一条直角边为x,则另一条为(4x),则根据三角形面积公式即可得到面积S和 x 之间的解析式,求最值即可【解答】解:设该三角形的一条直角边为x,则另一条为(4x),则其面积 S=x(4x)=

24、(x2)2+2,(x0)分析可得:当 x=2时,S取得最大值,此时S=2;故选:C11已知点(n,an)在函数 y=2x13 的图象上,则数列 an的前 n 项和 Sn的最小值为()A36 B36 C6 D6【考点】8E:数列的求和【分析】点(n,an)在函数 y=2x13 的图象上,的 an=2n13,a1=11,=n212n由二次函数性质,求得Sn的最小值【解答】解:点(n,an)在函数 y=2x13的图象上,则 an=2n13,a1=11=n212nnN+,当 n=6时,Sn取得最小值为 36故选:B12若钝角三角形三内角的度数成等差数列,且最大边长与最小边长的比值为m,则 m 的范围是

25、()A(1,2)B(2,+)C 3,+)D(3,+)【考点】HQ:正弦定理的应用【分析】设三个角分别为A,+A,由正弦定理可得 m=,利用两角和差的正弦公式化为,利用单调性求出它的值域【解答】解:钝角三角形三内角A、B、C的度数成等差数列,则B=,A+C=,19 可设三个角分别为A,+A故 m=又A,tanA令 t=tanA,且t,则 m=在,上是增函数,+m2,故选 B二、填空题:本大题共4 小题,每小题 5 分,满分 20 分.把答案填在答题卡上.13若向量=(4,2),=(8,x),则 x 的值为4【考点】9K:平面向量共线(平行)的坐标表示【分析】利用向量平行的性质直接求解【解答】解:

26、向量=(4,2),=(8,x),解得 x=4故答案为:414若关于 x 的方程 x2mx+m=0 没有实数根,则实数m 的取值范围是(0,4)【考点】3W:二次函数的性质【分析】由二次函数的性质可知:0,根据一元二次不等式的解法,即可求得m 的取值范围【解答】解:由方程 x2mx+m=0 没有实数根,则 0,m24m0,解得:0m4,实数 m 的取值范围(0,4),故答案为:(0,4)15已知 x,y 满足,则 z=2x+y 的最大值为320【考点】7C:简单线性规划【分析】先根据约束条件画出可行域,再利用几何意义求最值,z=2x+y 表示直线在 y 轴上的截距,只需求出可行域直线在y 轴上的

27、截距最大值即可【解答】解:,在坐标系中画出图象,三条线的交点分别是A(1,1),B(,),C(2,1),在ABC中满足 z=2x+y 的最大值是点 C,代入得最大值等于3故答案为:316设 f(x)=sinxcosx+cos2x,则 f(x)的单调递减区间是 k+,k+,(kZ)【考点】GL:三角函数中的恒等变换应用【分析】推导出 f(x)=sin(2x+)+,由此能求出 f(x)的单调递减区间【解答】解:f(x)=sinxcosx+cos2x=sin(2x+)+,f(x)的单调递减区间满足:,kZ,kZf(x)的单调递减区间是 k+,k+,(kZ)21 故答案为:k+,k+,(kZ)三、解答

28、题:本大题共6 小题,满分 70分解答应写出文字说明,证明过程或演算步骤17已知等比数列 an的前 n 项和为 Sn,公比为 q(q1),证明:Sn=【考点】89:等比数列的前 n 项和【分析】由,得,利用错位相减法能证明Sn=【解答】证明:因为,所以,qSn=,所以(1q)Sn=,当 q1 时,有 Sn=18已知平面向量,满足|=1,|=2(1)若与 的夹角=120,求|+|的值;(2)若(k+)(k ),求实数 k 的值【考点】9S:数量积表示两个向量的夹角;9T:数量积判断两个平面向量的垂直关系【分析】(1)利用两个向量数量积的定义,求得的值,可得|+|=的值(2)利用两个向量垂直的性质

29、,可得(k+)?(k )=k2?a2=0,由此求得 k 的值【解答】解:(1)|=1,|=2,若 与 的夹角=120,则=1?2?cos120=1,|+|=(2)(k+)(k ),(k+)?(k )=k2?=k24=0,k=222 19在 ABC中,内角 A,B,C的对边分别为 a,b,c,已知 c=acosB+bsinA(1)求 A;(2)若 a=2,b=c,求 ABC的面积【考点】HP:正弦定理【分析】(1)由已知及正弦定理,三角形内角和定理,两角和的正弦函数公式,同角三角函数基本关系式可得:tanA=1,结合范围 A(0,),可求 A的值(2)由三角形面积公式及余弦定理可求b2的值,进而

30、利用三角形面积公式即可计算得解【解答】(本小题满分 12 分)解:(1)由 c=acosB+bsinA及正弦定理可得:sinC=sinAcosB+sinBsinA在ABC中,C=AB,所以 sinC=sin(A+B)=sinAcosB+cosAsinB 由以上两式得 sinA=cosA,即 tanA=1,又 A(0,),所以 A=(2)由于 SABC=bcsinA=bc,由 a=2,及余弦定理得:4=b2+c22bccosB=b2+c2,因为 b=c,所以 4=2b2b2,即 b2=4,故ABC的面积 S=bc=b2=20已知数列 an 的前 n 项和为 Sn,且 a1=2,an+1=Sn(n

31、=1,2,3,)(1)证明:数列 是等比数列;(2)设 bn=,求数列 bn 的前 n 项和 Tn【考点】8H:数列递推式;8E:数列的求和【分析】(1)an+1=Sn+1Sn=Sn,整理为=2即可证明23(2)由(1)得:=2n,即 Sn=n?2n可得 bn=,利用裂项求和方法即可得出【解答】(1)证明:因为,an+1=Sn+1Sn=Sn,所以=2,又 a1=2,故数列 是等比数列,首项为2,公比为 2 的等比数列(2)解:由(1)得:=2n,即 Sn=n?2n所以 bn=,故数列 bn 的前 n 项和 Tn=+=1=21某电力部门需在A、B 两地之间架设高压电线,因地理条件限制,不能直接测

32、量A、B 两地距离现测量人员在相距km 的 C、D两地(假设 A、B、C、D在同一平面上)测得 ACB=75 ,BCD=45 ,ADC=30 ,ADB=45 (如图),假如考虑到电线的自然下垂和施工损耗等原因,实际所须电线长度为A、B 距离的倍,问施工单位应该准备多长的电线?【考点】HU:解三角形的实际应用【分析】在ACD中求出 AC,在 BCD中求出 BC,在 ABC中利用余弦定理求出AB【解答】解:在 ACD中,ADC=30 ,ACD=75 +45=120,CAD=30 ,AC=CD=,在BCD中,BDC=30 +45=75,BCD=45 ,CBD=60 ,由正弦定理得:,24 BC=在A

33、BC中,由余弦定理得:AB2=AC2+BC22AC?BC?cos ACB=3+()22?=5,AB=故施工单位应该准备电线长为=5km22已知 A,B,C为锐角 ABC的内角,=(sinA,sinBsinC),=(1,2),(1)tanB,tanBtanC,tanC能否构成等差数列?并证明你的结论;(2)求 tanAtanBtanC的最小值【考点】9T:数量积判断两个平面向量的垂直关系【分析】(1)依题意有 sinA=2sinBsinC,从而 2sinBsinC=sinBcosC+cosBsinC,再由 cosB 0,cosC0,能推导出 tanB,tanBtanC,tanC成等差数列(2)推

34、导出 tanAtanBtanC=tanA+tanB+tanC,从而 tanAtanBtanC 8,由此能求出 tanAtanBtanC的最小值为 8【解答】(本小题满分 12 分)解:(1)依题意有 sinA=2sinBsinC 在ABC中,A=BC,所以 sinA=sin(B+C)=sinBcosC+cosBsinC,所以 2sinBsinC=sinBcosC+cosBsinC 因为 ABC为锐角三角形,所以cosB 0,cosC 0,所以 tanB+tanC=2tanBtanC,所以 tanB,tanBtanC,tanC成等差数列(2)在锐角 ABC中,tanA=tan(BC)=tan(B

35、+C)=,即 tanAtanBtanC=tanA+tanB+tanC,由(1)知 tanB+tanC=2tanBtanC,于是 tanAtanBtanC=tanA+2tanBtanC,整理得 tanAtanBtanC 8,25 当且仅当 tanA=4时取等号,故 tanAtanBtanC的最小值为 826 广东省恵州市高一(下)期末数学试卷一.选择题1一元二次不等式 x2+x+20 的解集是()A x|x1 或 x2B x|x2 或 x1C x|1x2D x|2x12已知 ,为平面,a,b,c为直线,下列说法正确的是()A若 ba,a?,则 bB若 ,=c,bc,则 bC若 ac,bc,则 a

36、bD若 ab=A,a?,b?,a,b,则 3在 ABC中,AC=1,A=30,则 ABC面积为()ABC 或D或4设直线 l1:kxy+1=0,l2:xky+1=0,若 l1l2,则 k=()A1 B1 C 1 D05已知 a0,b0,a+b=1,则+的最小值是()A4 B5 C 8 D96若an 为等差数列,且 a2+a5+a8=39,则 a1+a2+a9的值为()A114 B117 C 111 D1087如图:正四面体S ABC中,如果 E,F 分别是 SC,AB 的中点,那么异面直线EF与 SA所成的角等于()A90B45C 60D308若直线与直线 2x+3y6=0的交点位于第一象限,

37、则直线 l 的倾斜角的取值范围()ABC D27 9若实数 x,y 满足约束条件,则 x2y 的最大值为()A9 B3 C 1 D310在ABC中,角 A,B,C所对边分别为 a,b,c,若 a,b,c 成等比数列,且 A=60,则()ABCD11由直线 y=x+2 上的一点向圆(x3)2+(y+1)2=2引切线,则切线长的最小值()A4 B3 C D112已知 an=log(n+1)(n+2)(nN*)我们把使乘积 a1?a2?a3?an为整数的数 n 叫做“优数”,则在区间(1,2004)内的所有优数的和为()A1024 B2003 C2026 D2048二.填空题13cos45sin15

38、 sin45 cos15的值为14圆心在 y 轴上,半径为 1,且过点(1,2)的圆的标准方程是15公差不为零的等差数列的第1 项、第6 项、第21 项恰好构成等比数列,则它的公比为16一个几何体的三视图如图所示,其中主视图和左视图是腰长为1 的两个全等的等腰直角三角形,则该几何体的外接球的表面积为三.解答题解答须写出文字说明、证明过程和演算步骤。17(10 分)已知函数 f(x)=2sinxcosx+2cos2x1,xR(1)求函数 f(x)的最小正周期;28(2)求 f()的值18(12 分)已知 ABC的内角 A,B,C所对的边分别为 a,b,c,且 a=2,cosB=()若 b=4,求

39、 sinA 的值;()若ABC的面积 SABC=4求 b,c 的值19(12 分)在 ABC中,已知 BC边上的高所在直线的方程为x2y+1=0,A 平分线所在直线的方程为 y=0,若点 B的坐标为(1,2),()求直线 BC的方程;()求点 C的坐标29 20(12 分)如图,矩形ABCD所在的平面与正方形ADPQ所在的平面相互垂直,E是 QD的中点()求证:QB平面 AEC;()求证:平面QDC 平面 AEC;()若 AB=1,AD=2,求多面体 ABCEQ 的体积21(12 分)已知数列 an的前 n 项和为 Sn,且满足 Sn=2an+n(nN*)(1)求证数列 an1是等比数列,并求

40、数列 an 的通项公式;(2)若 bn=log2(an+1),求数列 的前 n 项和 Tn(12 分)已知圆 C的方程为:x2+y22x4y+m=0(1)求 m 的取值范围;(2)若圆 C与直线 3x+4y6=0 交于 M、N 两点,且|MN|=2,求 m 的值;(3)设直线 xy1=0与圆 C交于 A、B 两点,是否存在实数m,使得以 AB为直径的圆过原点,若存在,求出实数m 的值;若不存在,请说明理由30 广东省恵州市高一(下)期末数学试卷参考答案与试题解析一.选择题1一元二次不等式 x2+x+20 的解集是()A x|x1 或 x2B x|x2 或 x1C x|1x2D x|2x1【考点

41、】74:一元二次不等式的解法【分析】把不等式 x2+x+20 化为(x+1)(x2)0,求出解集即可【解答】解:一元二次不等式 x2+x+20 可化为 x2x20,即(x+1)(x2)0,解得 1x2,不等式的解集是 x|1x2故选:C【点评】本题考查了一元二次不等式的解法与应用问题,是基础题2已知 ,为平面,a,b,c为直线,下列说法正确的是()A若 ba,a?,则 bB若 ,=c,bc,则 bC若 ac,bc,则 abD若 ab=A,a?,b?,a,b,则 【考点】LP:空间中直线与平面之间的位置关系;LO:空间中直线与直线之间的位置关系【分析】在 A 中,b或 b?;在 B中,b 与 相

42、交、平行或 b?;在 C中,a 与 b 相交、平行或异面;在 D 中,由面面平行的判定定理得 【解答】解:由 ,为平面,a,b,c 为直线,知:在 A 中,若 ba,a?,则 b或 b?,故 A 错误;在 B中,若 ,=c,bc,则 b 与 相交、平行或 b?,故 B错误;在 C中,若 ac,bc,则 a 与 b 相交、平行或异面,故C错误;在 D 中,若 ab=A,a?,b?,a,b,则由面面平行的判定定理得 ,故 D 正31 确故选:D【点评】本题考查命题真假的判断,考查空间中线线、线面、面面间的位置关系等基础知识,考查推理论证能力、运算求解能力、空间能力,考查化归与转化思想、数形结合思想

43、,是中档题3在 ABC中,AC=1,A=30,则 ABC面积为()ABC 或D或【考点】HP:正弦定理【分析】根据题意和三角形的面积公式直接求出ABC面积【解答】解:因为,AC=1,A=30 ,则ABC面积为 S=,故选:B【点评】本题考查正弦定理中的三角形的面积公式,属于基础题4设直线 l1:kxy+1=0,l2:xky+1=0,若 l1l2,则 k=()A1 B1 C 1 D0【考点】II:直线的一般式方程与直线的平行关系【分析】对 k 分类讨论,利用平行线的充要条件即可得出【解答】解:k=0时,两条直线不平行k0 时,由 l1l2,则,解得 k=1综上可得:k=1故选:A【点评】本题考查

44、了平行线的充要条件、分类讨论方法,考查了推理能力与计算能力,属于基础题5已知 a0,b0,a+b=1,则+的最小值是()A4 B5 C 8 D932【考点】7F:基本不等式【分析】结合乘“1”法,通过基本不等式求解最值即可【解答】解:a0,b0,a+b=1,+=(+)(a+b)=5+5+2=9,当且仅当 b=2a=时取等号故选:9【点评】本题考查了乘“1”法在基本不等式的应用,考查基本不等式的性质以及计算能力6若an 为等差数列,且 a2+a5+a8=39,则 a1+a2+a9的值为()A114 B117 C 111 D108【考点】85:等差数列的前 n 项和【分析】a2+a5+a8=39=

45、3a5,解得 a5=13再利用求和公式及其性质即可得出【解答】解:a2+a5+a8=39=3a5,解得 a5=13则 a1+a2+a9=9a5=117故选:B【点评】本题考查了等差数列的通项公式及其求和公式与性质,考查了推理能力与计算能力,属于中档题7如图:正四面体S ABC中,如果 E,F 分别是 SC,AB 的中点,那么异面直线EF与 SA所成的角等于()A90B45C 60D30【考点】LM:异面直线及其所成的角【分析】先通过平移将两条异面直线平移到同一个起点AC的中点 D,得到的锐角或直角就是异面直线所成的角,在三角形中,再利用余弦定理求出此角即可33【解答】解:如图,取 AC的中点

46、D,连接 DE、DF,DEF为异面直线 EF与 SA所成的角设棱长为 2,则 DE=1,DF=1,而 EDDFDEF=45 ,故选 B【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,取 AC的中点 D,是解题的关键,属于基础题8若直线与直线 2x+3y6=0的交点位于第一象限,则直线 l 的倾斜角的取值范围()ABC D【考点】I3:直线的斜率;IM:两条直线的交点坐标【分析】联立两直线方程到底一个二元一次方程组,求出方程组的解集即可得到交点的坐标,根据交点在第一象限得到横纵坐标都大于0,联立得到关于 k 的不等式组,求出不等式组的解集即可得到 k 的范围,然

47、后根据直线的倾斜角的正切值等于斜率k,根据正切函数图象得到倾斜角的范围【解答】解:联立两直线方程得:,将代入得:x=,把代入,求得y=,所以两直线的交点坐标为(,),34 因为两直线的交点在第一象限,所以得到,由解得:k;由解得 k或 k,所以不等式的解集为:k,设直线 l 的倾斜角为 ,则 tan,所以 (,)方法二、直线 l 恒过定点(0,),作出两直线的图象,设直线 2x+3y6=0与 x 轴交于点 A,与 y 轴交于点 B从图中看出,斜率 kAPk+,即k+,故直线 l 的倾斜角的取值范围应为(,)故选 B【点评】此题考查学生会根据两直线的方程求出交点的坐标,掌握象限点坐标的特点,掌握

48、直线倾斜角与直线斜率的关系,是一道综合题9若实数 x,y 满足约束条件,则 x2y 的最大值为()A9 B3 C 1 D3【考点】7C:简单线性规划【分析】作出不等式组表示的平面区域;作出目标函数对应的直线;结合图象知当直线过B(2,3)时,z最小,当直线过 A 时,z最大【解答】解:画出不等式表示的平面区域:将目标函数变形为z=x2y,作出目标函数对应的直线,直线过 B时,直线的纵截距最小,z 最大,由:,可得 B(1,1),z最大值为 1;故选:C35【点评】本题考查画不等式组表示的平面区域、考查数形结合求函数的最值10在ABC中,角 A,B,C所对边分别为 a,b,c,若 a,b,c 成

49、等比数列,且 A=60,则()ABCD【考点】HP:正弦定理【分析】由 a,b,c 成等比数列,可得代入再利用正弦定理可得=sinA,即可得出【解答】解:a,b,c成等比数列,=sinA=sin60=故选:C【点评】本题考查了等比数列的性质、正弦定理的应用,考查了推理能力与计算能力,属于基础题11由直线 y=x+2 上的一点向圆(x3)2+(y+1)2=2引切线,则切线长的最小值()A4 B3 C D1【考点】J9:直线与圆的位置关系;IT:点到直线的距离公式【分析】确定圆心坐标和圆的半径,要使切线长的最小,则必须点C到直线的距离最小,利用点到直线的距离公式求出圆心到直线y=x2 的距离即为|

50、PC|的长,然后根据半径r,PC,PM36 满足勾股定理即可求出此时的切线长【解答】解:由题意,圆心 C(3,1),半径 r=,要使切线长的最小,则必须点C到直线的距离最小此时,圆心 C(3,1)到直线 y=x+2 的距离 d=所求的最小 PM=4故选 A【点评】本题的考点是直线与圆的位置关系,考查学生灵活运用点到直线的距离公式化简求值,解题的关键是找出切线长最短时的条件12已知 an=log(n+1)(n+2)(nN*)我们把使乘积 a1?a2?a3?an为整数的数 n 叫做“优数”,则在区间(1,2004)内的所有优数的和为()A1024 B2003 C2026 D2048【考点】4H:对

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服