资源描述
2022高考试题分类汇编:11:不等式
一、选择题
1.【2022高考山东文6】设变量满足约束条件那么目标函数的取值范围是
(A) (B) (C) (D)
【答案】A
【解析】做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最小,此时最大为,当直线经过点时,直线截距最大,此时最小,由,解得,此时,所以的取值范围是,选A.
2.【2022高考安徽文8】假设 ,满足约束条件 ,那么的最小值是
〔A〕-3 〔B〕0 〔C〕 〔D〕3
【答案】A
【解析】约束条件对应边际及内的区域: 那么。
3.【2022高考新课标文5】正三角形ABC的顶点A(1,1),B(1,3),顶点C在第一象限,假设点〔x,y〕在△ABC内部,那么z=-x+y的取值范围是
〔A〕(1-,2) 〔B〕(0,2) 〔C〕(-1,2) 〔D〕(0,1+)
【答案】A
【解析】做出三角形的区域如图,由图象可知当直线经过点B时,截距最大,此时,当直线经过点C时,直线截距最小.因为轴,所以,三角形的边长为2,设,那么,解得,,因为顶点C在第一象限,所以,即代入直线得,所以的取值范围是,选A.
4.【2022高考重庆文2】不等式 的解集是为
〔A〕 〔B〕 〔C〕〔-2,1〕〔D〕∪
【答案】C
【解析】原不等式等价于即,所以不等式的解为,选C.
5.【2022高考浙江文9】假设正数x,y满足x+3y=5xy,那么3x+4y的最小值是
A. B. C.5 D.6
【答案】C
【解析】x+3y=5xy,,
.
6.【2022高考四川文8】假设变量满足约束条件,那么的最大值是〔 〕
A、12 B、26 C、28 D、33
【答案】C
【解析】如图可行域为图中阴影局部,当目标函数直线经过点M时有最大值,联立方程组得,代入目标函数得,应选C.
7.【2022高考天津文科2】设变量x,y满足约束条件,那么目标函数z=3x-2y的最小值为
〔A〕-5 〔B〕-4 〔C〕-2 〔D〕3
【答案】B
【解析】做出不等式对应的可行域如图,由得,由图象可知当直线经过点时,直线的截距最大,而此时最小为,选B.
8.【2022高考陕西文10】小王从甲地到乙地的时速分别为a和b〔a<b〕,其全程的平均时速为v,那么 〔 〕
A.a<v< B.v=
C. <v< D.v=
【答案】A.
【解析】设甲乙两地相距,那么小王用时为,所以,,、.,.应选A.
9.【2022高考辽宁文9】设变量x,y满足那么2x+3y的最大值为
(A) 20 (B) 35 (C) 45 (D) 55
【答案】D
【解析】画出可行域,根据图形可知当x=5,y=15时2x+3y最大,最大值为55,应选D
【点评】此题主要考查简单线性规划问题,难度适中。该类题通常可以先作图,找到最优解求出最值,也可以直接求出可行域的顶点坐标,代入目标函数进行验证确定出最值。
10.【2022高考湖南文7】设 a>b>1, ,给出以下三个结论:
> ;②< ; ③,
其中所有的正确结论的序号是
A.① B.①② C.②③ D.①②③
【答案】D
【解析】由不等式及a>b>1知,又,所以>,①正确;由指数函数的图像与性质知②正确;由a>b>1,知,由对数函数的图像与性质知③正确.
【点评】此题考查函数概念与根本初等函数Ⅰ中的指数函数的图像与性质、对数函数的图像与性质,不等关系,考查了数形结合的思想.函数概念与根本初等函数Ⅰ是常考知识点.
11.【2022高考广东文5】变量,满足约束条件,那么的最小值为
A.B. C. D.
【答案】C
【解析】不等式组表示的平面区域为如下列图的阴影局部,可化为直线,那么当该直线过点时,取得最小值,.
12.【2102高考福建文10】假设直线y=2x上存在点〔x,y〕满足约束条件那么实数m的最大值为
A.-1 B.1 C. D.2
10.【答案】B.
【解析】如图当直线经过函数的图像与直线的交点时,函数的图像仅有一个点P在可行域内,由得,所以.应选B.
13.【2022高考上海文10】满足约束条件的目标函数的最小值是
【答案】-2.
【解析】作出约束条件表示的平面区域可知,当,时,目标函数取最小值,为-2.
14.【2022高考湖南文12】不等式x2-5x+6≤0的解集为______.
【答案】
【解析】由x2-5x+6≤0,得,从而的不等式x2-5x+6≤0的解集为.
【点评】此题考查一元二次不等式的解法,考查简单的运算能力.
15.【2022高考全国文14】假设满足约束条件,那么的最小值为____________.
【答案】
【解析】做出做出不等式所表示的区域如图,由得,平移直线,由图象可知当直线经过点时,直线的截距最大,此时最小,最小值为.
16.【2022高考浙江文14】 设z=x+2y,其中实数x,y满足, 那么z的取值范围是_________。
【答案】
【解析】利用不等式组,作出可行域,可知区域表示的四边形,但目标函数过点〔0,0〕时,目标函数最小,当目标函数过点时最大值为.
17.【2022高考江西文11】不等式的解集是___________。
【答案】
【解析】原不等式等价为或,即或,解得或,所以原不等式的解集为。
18.【2102高考福建文15】关于x的不等式x2-ax+2a>0在R上恒成立,那么实数a的取值范围是_________.
【答案】.
【解析】恒成立,即,易得.
19.【2022高考四川文16】设为正实数,现有以下命题:
①假设,那么;
②假设,那么;
③假设,那么;
④假设,那么。
【答案】①④
【解析】①,,所以是真命题;②时无法确定,是假命题;③时,,是假命题;④同①可证,为真命题.应选①④.
20.【2022高考江苏13】〔5分〕函数的值域为,假设关于x的不等式的解集为,那么实数c的值为 ▲ .
【答案】9。
【考点】函数的值域,不等式的解集。
【解析】由值域为,当时有,即,
∴。
∴解得,。
∵不等式的解集为,∴,解得。
21.【2022高考湖北文14】假设变量x,y满足约束条件那么目标函数z=2x+3y的最小值是________.
【答案】2
【解析】〔解法一〕作出不等式组所表示的可行域(如以下列图的及其内部〕.
可知当直线经过的交点时,取得最小值,且.
〔解法二〕作出不等式组所表示的可行域(如以下列图的及其内部〕.目标函数在的三个端点处取的值分别为13,3,2,比较可得目标函数的最小值为2.
【点评】此题考查线性规划求解最值的应用.运用线性规划求解最值时,关键是要搞清楚目标函数所表示的直线的斜率与可行域便捷直线的斜率之间的大小关系,以好确定在哪个端点,目标函数取得最大值;在哪个端点,目标函数取得最小值.来年需注意线性规划在生活中的实际应用.
22.【2022高考江苏14】〔5分〕正数满足:那么的取值范围是 ▲ .
【答案】。
【考点】可行域。
【解析】条件可化为:。
设,那么题目转化为:
满足,求的取值范围。
作出〔〕所在平面区域〔如图〕。求出的切
线的斜率,设过切点的切线为,
那么,要使它最小,须。
∴的最小值在处,为。此时,点在上之间。
当〔〕对应点时, ,
∴的最大值在处,为7。
∴的取值范围为,即的取值范围是。
展开阅读全文