1、丰台区20222022学年度第二学期期末练习初二数学 2022.07考生须知1. 本试卷共6页,共三道大题,26道小题。总分值100分。考试时间90分钟。2. 在试卷和答题卡上认真填写学校名称、姓名和考号。3. 试题答案一律填涂或书写在答题卡上,在试卷上作答无效。4. 在答题卡上,选择题用2B铅笔作答,其他试题用黑色字迹签字笔作答。5. 考试结束,将本试卷、答题卡和草稿纸一并交回。一、选择题此题共30分,每题3分第1-10题均有四个选项,符合题意的选项只有一个1在平面直角坐标系xOy中,点P2,3关于原点O对称的点的坐标是A2,3B2,3C2,3D2,32如果一个多边形的每个内角都是120,那
2、么这个多边形是A五边形B六边形C七边形D八边形3下面四个图案依次是我国汉字中的“福禄寿喜的艺术字图这四个图案中是中心对称图形的是ABCD4方程的解是Ax= 0Bx= 2Cx1= 0,x2= 1Dx1= 0,x2= 25数学兴趣小组的甲、乙、丙、丁四位同学进行复原魔方练习,下表记录了他们10次复原魔方所用时间的平均值与方差:甲乙丙丁秒303028281.211.051.211.05要从中选择一名复原魔方用时少又发挥稳定的同学参加比赛,应该选择A甲B乙C丙D丁 6矩形ABCD中,对角线AC,BD相交于点O,如果ABO=70,那么AOB的度数是A40 B55 C60 D707用配方法解方程,原方程应
3、变形为ABCD8德国心理学家艾宾浩斯H.Ebbinghaus研究发现,遗忘在学习之后立即开始,遗忘是有规律的他用无意义音节作记忆材料,用节省法计算保持和遗忘的数量通过测试,他得到了一些数据,根据这些数据绘制出一条曲线,即著名的艾宾浩斯记忆遗忘曲线,如图该曲线对人类记忆认知研究产生了重大影响小梅观察曲线,得出以下四个结论:记忆保持量是时间的函数遗忘的进程是不均匀的,最初遗忘速度快,以后逐渐减慢学习后1小时,记忆保持量大约为40%遗忘曲线揭示出的规律提示我们学习后要及时复习其中错误的结论是ABCD9关于x的一元二次方程有两个实数根,那么实数k的取值范围是AB且C且D10如图1所示,四边形ABCD为
4、正方形,对角线AC,BD相交于点O,动点P在正方形的边和对角线上匀速运动. 如果点P运动的时间为x,点P与点A的距离为y,且表示 y与x的函数关系的图象大致如图2所示,那么点P的运动路线可能为 图1 图2AABCABABCDCADOADAOBC二、填空题此题共18分,每题3分11函数中,自变量的取值范围是12在ABC中,D,E分别是边AB,AC的中点,如果DE=10,那么BC=北13“四个一活动自2022年9月启动至今,北京市已有60万中小学生参观了天安门广场的升旗仪式.以下列图是利用平面直角坐标系画出的天安门广场周围的景点分布示意图. 如果这个坐标系分别以正东、正北方向为x轴、y轴的正方向,
5、表示故宫的点的坐标为0,1,表示中国国家博物馆的点的坐标为1,1,那么表示人民大会堂的点的坐标是14在四边形ABCD中,对角线AC,BD相交于点O如果ABCD,请你添加一个条件,使得四边形ABCD成为平行四边形,这个条件可以是写出一种情况即可15在平面直角坐标系xOy中,一次函数和的图象如下列图,那么关于x的一元一次不等式的解集是.16下面是“作角的平分线的尺规作图过程.:AOB.求作:射线OE,使OE平分AOB.作法:如图,1在射线OB上任取一点C;2以点O为圆心,OC长为半径作弧,交射线OA于点D;3分别以点C,D为圆心,OC长为半径作弧,两弧相交于点E;4作射线OE所以射线OE就是所求作
6、的射线请答复:该作图的依据是三、解答题此题共52分,第17题4分,第18-24题每题5分,第25题6分,第26题7分17解方程: 18在平面直角坐标系xOy中,一次函数的图象与x轴交于点,与轴交于点 1求,两点的坐标;2在给定的坐标系中画出该函数的图象;3点M1,y1,N3,y2在该函数的图象上,比较y1与y2的大小.19:如图,E,F为ABCD 的对角线BD上的两点,且BE=DF 求证:AECF 20阅读以下材料:为引导学生广泛阅读古今文学名著,某校开展了读书月活动. 学生会随机调查了局部学生平均每周阅读时间的情况,整理并绘制了如下的统计图表:学生平均每周阅读时间频数分布直方图平均每周阅读时
7、间x时频数频率100.025600.150a0.200110b1000.250400.100合计4001.000学生平均每周阅读时间频数分布表请根据以上信息,解答以下问题:1在频数分布表中,a=_,b=_;2补全频数分布直方图;3如果该校有1600名学生,请你估计该校平均每周阅读时间不少于6小时的学生大约有人.21“在线教育指的是通过应用信息科技和互联网技术进行内容传播和快速学习的方法.“互联网+时代,中国的在线教育得到迅猛开展. 请根据下面张老师与记者的对话内容,求2022年到2022年中国在线教育市场产值的年平均增长率. 在线教育打破了时空限制,可碎片化学习,可以说具有效率高、方便、低门槛
8、、教学资源丰富的特点.那么这两年中国在线教育市场产值如何呢根据中国产业信息网数据统计及分析,2022年中国在线教育市场产值约为1 000亿元,2022年中国在线教育市场产值约为1 440亿元.22如图,在四边形中,我们把这种两组邻边分别相等的四边形叫做筝形 根据学习平行四边形性质的经验,小文对筝形的性质进行了探究 1小文根据筝形的定义得到筝形边的性质是_;2小文通过观察、实验、猜想、证明得到筝形角的性质是“筝形有一组对角相等.请你帮他将证明过程补充完整. :如图,在筝形中,.求证:_证明:3小文连接筝形的两条对角线,探究得到筝形对角线的性质是_写出一条即可23关于x的一元二次方程1求证:此方程
9、有两个不相等的实数根;2选择一个m的值,并求出此时方程的根24小明租用共享单车从家出发,匀速骑行到相距2400米的邮局办事. 小明出发的同时,他的爸爸以每分钟96米的速度从邮局沿同一条道路步行回家,小明在邮局停留了2分钟后沿原路按原速返回. 设他们出发后经过t分时,小明与家之间的距离为s1米,小明爸爸与家之间的距离为s2米,图中折线OABD,线段EF分别表示s1,s2与t之间的函数关系的图象.1求s2与t之间的函数表达式;2小明从家出发,经过多长时间在返回途中追上爸爸25:如图,正方形ABCD中,点F是对角线BD上的一个动点.1如图1,连接AF,CF,直接写出AF与CF的数量关系;2如图2,点
10、E为AD边的中点,当点F运动到线段EC上时,连接AF,BE相交于点O.请你根据题意在图2中补全图形;猜想AF与BE的位置关系,并写出证明此猜想的思路;如果正方形的边长为2,直接写出AO的长.图1 图226在平面直角坐标系xOy中,如果点A,点C为某个菱形的一组对角的顶点,且点A,C在直线y=x上,那么称该菱形为点A,C的“极好菱形. 以下列图为点A,C的“极好菱形的一个示意图.点M的坐标为1,1,点P的坐标为3,3.1点E2,1,F1,3,G4,0中,能够成为点M,P的“极好菱形的顶点的是; 2如果四边形MNPQ是点M,P的“极好菱形.当点N的坐标为3,1时,求四边形MNPQ的面积;当四边形MNPQ的面积为8,且与直线y=x+b有公共点时,写出b的取值范围.