1、北师大版七年级数学上册平时训练试卷(word可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A .3个 B .4个 C .5个 D .6个2、下列图形中,不是柱体的是( )A . B . C . D .3、下列说法正确的是( )A .圆柱的侧面是长方形 B .柱体的上下两底面可以大小不一样C .棱锥的侧面是三角形 D .长方体不是棱柱4、将如图所示的RtACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )A . B . C . D
2、 .5、如图,一个几何体的三视图分别是两个矩形,一个扇形,则这个几何体表面积的大小为( )A .12 B .15 C .12+6 D .15+126、下面几何体中,是长方体的为( )A . B . C . D .7、如图所示,是由8个完全相同的小正方体搭成的几何体若小正方体的棱长为1,则该几何体的表面积是( )A .16 B .30 C .32 D .348、下列几何体中,其主视图是曲线图形的是( )A . B . C . D .9、沿图中虚线旋转一周,能围成的几何体是( )A . B . C . D .10、下列几何体中,属于柱体的有( )A .1个 B .2个 C .3个 D .4个11、
3、将下左图中的三角形绕虚线旋转一周,所得的几何体是( ).A . B . C . D .12、将下图中的三角形绕虚线旋转一周,所得的几何体是( ).A . B . C . D .13、下列图形属于平面图形的是( )A .立方体 B .球 C .圆柱 D .三角形14、下列几何体中,圆柱体是( )A . B . C . D .15、下列几何体中,是棱锥的为( )A . B . C . D .二、填空题(每小题4分,共计20分)1、已知在RtABC中,C=90,AB=5cm,BC=3cm,把RtABC绕AB旋转一周,所得几何体的表面积是 2、一个正方体有 个面3、如图所示为8个立体图形.其中,柱体的
4、序号为 ,锥体的序号为 ,有曲面的序号为 .4、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .5、一个正方体的棱长2102毫米,则它的表面积是 .体积是 .三、判断题(每小题2分,共计6分)1、棱柱侧面的形状可能是一个三角形。( )2、体是由面围成的( )四、计算题(每小题4分,共计12分)1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周
5、后是一个什么几何体?请求出这个几何体的底面积和侧面积3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?五、解答题(每小题4分,共计32分)1、将一个半径为2cm的圆分成3个扇形,其圆心角的比1:2:3,求:各个扇形的圆心角的度数其中最大一个扇形的面积2、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周(温馨提示:结果用表示;你可能用到其中的一个公式,V圆柱=r2h,V球体=R3, V圆锥=r2h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是 (2)如果绕着它
6、的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?3、如图所示的立方体的六个面分别标着连续的整数,求这六个整数的和4、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?5、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周(温馨提示:结果用表示;你可能用到其中的一个公式,V圆柱=r2h,V球体=R3
7、, V圆锥=r2h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是什么?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着直角边8所在的直线旋转一周形成的几何体的体积哪个大?6、图中的几何体是由几个面所摆成的?面与面相交成几条线?它们是直的还是曲的?7、一个表面涂满色的正方体,现将棱三等分,再把它切开变成若干个小正方体,问:其中三面都涂色的有多少个?两面都涂色的有多少个?只有一面涂色的多少个?各面都没有涂色的有多少个?8、下图是长方体的表面展开图,将它折叠成一个长方体.(1) 哪几个点与点重合?(2) 若,求这个长方体的表面积和体积.