资源描述
第二章 2.1 2.1.2系统抽样
A级 基础巩固
一、选择题
1.为了解1 000名学生的学习情况,采用系统抽样的方法,从中抽取容量为40的样本,则分段的间隔为( C )
A.50 B.40
C.25 D.20
[解析] 根据系统抽样的特点可知分段间隔为=25,故选C.
2.采用系统抽样方法从960人中抽取32人做问卷调查.为此将他们随机编号为1,2,…,960,分组后在第一组采用简单随机抽样的方法抽到的号码为9.抽到的32人中,编号落入区间[1,450]的人做问卷A,编号落入区间[451,750]的人做问卷B,其余的人做问卷C.则抽到的人中,做问卷B的人数为( C )
A.7 B.9
C.10 D.15
[解析] 从960人中用系统抽样方法抽取32人,则抽样距为k==30,
因为第一组号码为9,
则第二组号码为9+1×30=39,…,
第n组号码为9+(n-1)×30=30n-21,
由451≤30n-21≤750,即15≤n≤25,所以n=16,17,…,25,共有25-16+1=10(人).
3.湖南卫视《爸爸去哪儿》节目组为热心观众给予奖励,要从2 014名小观众中抽取50名幸运小观众.先用简单随机抽样从2 014人中剔除14人,剩下的2 000人再按系统抽样方法抽取50人,则在2 014人中,每个人被抽取的可能性( C )
A.均不相等 B.不全相等
C.都相等,且为 D.都相等,且为
[解析] 因为在系统抽样中,若所给的总体个数不能被样本容量整除,则应先剔除几个个体,本题先剔除14人,然后再分组,在剔除过程中,每个个体被剔除的机会相等.所以,每个个体被抽到的机会都相等,均为=.
4.下列抽样中不是系统抽样的是( C )
A.从标有1~15号的15个球中,任选3个作样本,按从小号到大号排序,随机选起点i0,以后i0+5,i0+10(超过15则从1再数起)号入样
B.工厂生产的产品,用传送带将产品送入包装车间前,检验人员从传送带上每隔五分钟抽一件产品进行检验
C.搞某一市场调查,规定在某一路段随机抽一个人进行询问,直到调查到事先规定调查人数为止
D.电影院调查观众的某一指标,通知每排(每排人数相等)座位号为14的观众留下来座谈
[解析] C中因为事先不知道总体,抽样方法不能保证每个个体按事先规定的可能性入样.故C不是系统抽样.
5.总体容量为203,若采用系统抽样法进行抽样,当抽样间距为多少时不需要剔除个体( D )
A.4 B.5
C.6 D.7
[解析] ∵203被7整除,∴选D.
6.为了检查某超市货架上的奶粉是否含有三聚氰胺,要从编号依次为1到50的袋装奶粉中抽取5袋进行检验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5袋奶粉的编号可能是( D )
A.5、10、15、20、25 B.2、4、8、16、32
C.1、2、3、4、5 D.7、17、27、37、47
[解析] 利用系统抽样,把编号分为5段,每段10袋,每段抽取一袋,号码间隔为10,故选D.
二、填空题
7.高三某班有学生56人,学生编号依次为1、2、3、…、56. 现用系统抽样的方法抽取一个容量为4的样本,已知编号为6、34、48的同学都在样本中,那么样本中另一位同学的编号应该是__20__.
[解析] 由于系统抽样的样本中个体编号是等距的,且间距为56/4=14,所以样本编号应为6、20、34、48.
8.将参加数学夏令营的100名同学编号为001、002、…、100.现采用系统抽样方法抽取一个容量为25的样本,且第一段中随机抽得的号码为004,则在046至078号中,被抽中的人数为__8__.
[解析] 抽样距为4,第一个号码为004,故001~100中是4的整数倍的数被抽出,在046至078号中有048、052、056、060、064、068、072、076,共8个.
三、解答题
9.一个体育代表队有200名运动员,其中两名是种子选手,现从中抽取13人参加某项运动.若种子选手必须参加,请用系统抽样法给出抽样过程.
[解析] (1)将除种子选手以外的198名运动员用随机方式编号,编号为001、002、…、198;
(2)将编号按顺序每18个为一段,分成11段;
(3)在第一段001、002、…、018,这十八个编号中用简单随机抽样法抽出一个(如010)作为起始号码;
(4)将编号为010、028、046、…、190的个体抽出,与种子选手一起参加这项运动.
B级 素养提升
一、选择题
1.某单位有840名职工,现采用系统抽样方法,抽取42人做问卷调查,将840人按1,2,…,840随机编号,则抽取的42人中,编号落入区间[481,720]的人数为( B )
A.11 B.12
C.13 D.14
[解析] 根据系统抽样的等可能性可知,每人入选的可能性都是,由题设可知区间[481,720]的人数为240,所以编号落入区间[481,720]的人数为×240=12.
2.用系统抽样的方法从个体数为1 003的总体中,抽取一个容量为50的样本,在整个抽样过程中每个个体被抽到的可能性是( C )
A. B.
C. D.
[解析] 根据系统抽样的方法可知,每个个体入样的可能性相同,均为,所以每个个体入样的可能性为.
3.系统抽样又称为等距抽样,从N个个体中抽取n个个体为样本,先确定抽样间隔,即抽样距k=(取整数部分),从第一段1,2,…,k个号码中随机抽取一个入样号码i0,则i0,i0+k,…,i0+(n-1)k号码均入样构成样本,所以每个个体的入样可能性是( A )
A.相等的 B.不相等的
C.与i0有关 D.与编号有关
[解析] 由系统抽样的定义可知,每个个体入样的可能性相等与抽样距无关,也与第一段入样号码无关,系统抽样所得样本的代表性与具体的编号有关,要求编号不能呈现个体特征随编号周期性变化,各个个体入样可能性与编号无关.
4.从编号为1~60的60枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用系统抽样方法抽取5枚导弹的编号可能是( C )
A.1、3、4、7、9、5 B.10、15、25、35、45
C.5、17、29、41、53 D.3、13、23、33、43
[解析] 分段间隔为=12,即相邻两个编号间隔为12,故选C.
二、填空题
5.某学校有学生4 022人.为调查学生对2016年巴西里约奥运会的了解状况,现用系统抽样的方法抽取一个容量为30的样本,则分段间隔是__134__.
[解析] 由于不是整数,所以应从4 022名学生中用简单随机抽样剔除2名,则分段间隔是=134.
6.一个总体中的100个个体的编号分别为0,1,2,3,…,99,依次将其分成10个小段,段号分别为0,1,2,…,9.现要用系统抽样的方法抽取一个容量为10的样本,规定如果在第0段随机抽取的号码为l,那么依次错位地取出后面各段的号码,即第k段中所抽取的号码的个位数为l+k或l+k-10(l+k≥10),则当l=6时,所抽取的10个号码依次是__6,17,28,39,40,51,62,73,84,95__.
[解析] 在第0段随机抽取的号码为6,则由题意知,在第1段抽取的号码应是17,在第2段抽取的号码应是28,依次类推,故正确答案为6,17,28,39,40,51,62,73,84,95.
三、解答题
7.下面给出某村委调查本村各户收入情况所作的抽样,阅读并回答问题:
本村人口:1 200人,户数300,每户平均人口数4人;
应抽户数:30户;
抽样间隔:=40;
确定随机数字:取一张人民币,编码的后两位数为12;
确定第一样本户:编码的后两位数为12的户为第一样本户;
确定第二样本户:12+40=52,52号为第二样本户;
……
(1)该村委采用了何种抽样方法?
(2)抽样过程中存在哪些问题,并修改;
(3)何处是用简单随机抽样.
[解析] (1)系统抽样.
(2)本题是对某村各户进行抽样,而不是对某村人口抽样,抽样间隔为=10,其他步骤相应改为确定随机数字:取一张人民币,编码的后两位数为02(或其他00~09中的一个);确定第一样本户:编号为02的户为第一样本户;确定第二样本户:02+10=12,编号为12的户为第二样本户;….
(3)确定随机数字用的是简单随机抽样,取一张人民币,编码的后两位数为02.
C级 能力拔高
1.一个总体中的1 000个个体编号为0,1,2,…,999,并依次将其分为10个小组,组号为0,1,2,…,9.要用系统抽样方法抽取一个容量为10的样本,规定如果在第0组随机抽取的号码为x,那么依次错位地得到后面各组的号码,即第k组中抽取的号码的后两位数为x+33k的后两位数.
(1)当x=24时,写出所抽取样本的10个号码;
(2)若所抽取样本的10个号码中有一个的后两位数是87,求x的取值范围.
[解析] (1)当x=24时,按规则可知所抽取样本的10个号码依次为:24,157,290,323,456,589,622,755,888,921.
(2)当k=0,1,2,…,9时,33k的值依次为0,33,66,99,132,165,198,231,264,297.
又抽取样本的10个号码中有一个的后两位数是87,从而x可以为87,54,21,88,55,22,89,56,23,90.
∴x的取值范围是{21,22,23,54,55,56,87,88,89,90}.
2.某位同学利用暑假期间准备搞一个社会实践调查,他打算从某小区内的120户居民中选出7户,他使用系统抽样的过程如下:
①编号:将120户居民从“1”到“120”随机地编号;
②决定间隔:因120被7除余1,故可先从总体中随机地剔除1个个体,再将余下的1 19个个体重新随机地编号为1到199号,最后设定间隔为17;
③随意使用一个起点,如38,然后推算出如下编号的居民为样本:38,55,72,89,106,123,140.
由于123和140并不在实际编号内,故他准备重新选取第一个号码,但他爸爸却说没有问题,爸爸的说法有错误吗?需要重新选取号码吗?你帮他解释一下.
[解析] 所谓系统抽样的第一个号码,一般是在第一组内用简单随机抽样的方法选取的一个号码,然后再等距离地抽取,这样就保证了后面所有的号码都在已知的编号内.但在实际应用时却不一定是这样来确定第一个号码的,而是随机确定第一个号码的,如这个学生确定的38,如果这时再等距离地确定后续号码就会使号码超出已编号码,这个时候只要将超过的部分减去若干个间隔,然后再将之放到样本编号之中就可以了.例如,因123-17×7=4,140-17×7=21.故抽取的号码如下:4,21,38,55,72,89.106.因此这个学生的爸爸的说法并没有错.
6
展开阅读全文