资源描述
七年级数学上册1.1生活中的图形同步试卷(A4可编辑)
(考试时间:120分钟,总分100分)
班级:__________ 姓名:__________ 分数:__________
一、单选题(每小题2分,共计34分)
1、将下列平面图形绕轴旋转一周,可得到图中所示的立体图形的是( )
A . B . C . D .
2、下列几何图形中为圆锥的是( ).
A . B . C . D .
3、已知圆锥的底面半径为2cm,母线长为5cm,则圆锥的侧面积是( )
A .10 cm2 B .5π cm2 C .10π cm2 D .16π cm2
4、在下列立体图形中,只要两个面就能围成的是( )
A . B . C . D .
5、下面图形中,以直线为轴旋转一周,可以得到圆柱体的是( )
A . B . C . D .
6、将如图所示的Rt△ACB绕直角边AC旋转一周,所得几何体的主视图(正视图)是( )
A . B . C . D .
7、图中的几何体是由哪个图形绕虚线旋转一周得到的( )
A . B . C . D .
8、某几何体的三视图如图所示;则该几何体的表面积为( )
A .6 +6+2 B .18+2 C .3 D .6
9、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )
A . B . C . D .
10、在一些常见的几何体正方体、长方体、圆柱、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )
A .3个 B .4个 C .5个 D .6个
11、下列说法正确的有( )
①n棱柱有2n个顶点,2n条棱,(n+2)个面(n为不小于3的正整数);②点动成线,线动成面,面动成体;③圆锥的侧面展开图是一个圆;④用平面去截一个正方体,截面的形状可以是三角形、四边形、五边形、六边形.
A .1个 B .2个 C .3个 D .4个
12、下列几何体中,其主视图是曲线图形的是( )
A . B . C . D .
13、与易拉罐类似的几何体是( )
A .圆锥 B .圆柱 C .棱锥 D .棱柱
14、下列几何体中,由一个曲面和一个圆围成的几何体是( )
A .球 B .圆锥 C .圆柱 D .棱柱
15、如下图所示将三角形绕直线l旋转一周,可以得到图(e)所示的立体图形的是( )
A .图(a) B .图(b) C .图(c) D .图(d)
16、围成下列立体图形的各个面中,每个面都是平面的是( )
A . B .
C . D .
17、一个物体的外形是长方体(如图(1)),其内部构造不祥.用平面横向自上而下截这个物体时,得到了一组截面,截面形状如图(2)所示,这个长方体的内部构造是( )
A .圆柱 B .球 C .圆锥 D .圆柱或球
二、填空题(每小题2分,共计40分)
1、五棱柱是由 个面围成的,圆锥是由个面围成的 .
2、一个棱锥共有7个面,这是 棱锥,有 个侧面.
3、在Rt△ABC中,∠C=90°,AC=3,BC=4,把它沿斜边AB所在直线旋转一周,所得几何体的侧面积是 .(结果保留π)
4、棱长是1cm的小立方体组成如图所示的几何体,那么这个几何体的表面积是 .
5、从棱长为2的正方体毛坯的一角,挖去一个棱长为1的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .
6、如图,长方形 的长 为 ,宽 为 ,将长方形绕 边所在直线旋转后形成的立体图形的体积是 .
7、如图,在长方体ABCD﹣EFGH中,与平面ADHE垂直的棱共有 条.
8、若正方体棱长的和是36,则它的体积是 .
9、如图,是由17个棱长2的小正方体搭成的几何体,则它的表面积是 .
10、用棱长是1cm的小正方体组成如图所示的几何体,把这个几何体放在桌子上,并把暴露的面涂上颜色,那么涂颜色面的面积之和是 cm2.
11、如图,在正方体ABCD﹣A′B′C′D′中,与棱AD平行的棱有 条.
12、长方形的两条边长分别为3cm和4cm,以其中一条边所在的直线为轴旋转一周后得到几何体的底面积是 .
13、长为4,宽为2的矩形绕其一边旋转构成一个圆柱的最大体积为 (结果保留π).
14、将一枚硬币立在桌面上,当用力一转时,它形成的是一个 体,说明的数学道理是 .
15、两个完全相同的长方体的长.宽.高分别为5cm.4cm.3cm,把它们叠放在一起组成个新长方体,在这个新长方体中,体积是 cm3 , 最大表面积是 cm2 .
16、如图中的几何体有 个面,面面相交成 线.
17、已知在Rt△ABC中,∠C=90°,AB=5cm,BC=3cm,把Rt△ABC绕AB旋转一周,所得几何体的表面积是 .
18、一个直角三角形绕它的一条直角边旋转一周得到的几何体是 .
19、五棱柱有 个面, 个顶点, 条棱.
20、一个几何体的三视图如图所示,其中从上面看的视图是一个等边三角形,则这个几何体的表面积为 .
三、计算题(每小题2分,共计6分)
1、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?
2、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积.
3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积.
四、解答题(每小题4分,共计20分)
1、如图,在平整地面上,若干个完全相同的棱长为10cm的小正方体堆成一个几何体.
(1) 这个几何体由个小正方体组成
(2) 在下面网格中画出左视图和俯视图.
(3) 如果在这个几何体的表面(不含底面)喷上黄色的漆,则这个几何体喷漆的面积是多少cm2.
2、如图,一个正五棱柱的底面边长为2cm,高为4cm.
(1)这个棱柱共有多少个面?计算它的侧面积;
(2)这个棱柱共有多少个顶点?有多少条棱?
(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数.
3、请写出下列几种情形所形成的图形:
(1)手电筒的光线;(2)雷达扫描在屏幕上形成的图形;(3)光线所经过的路径;(4)一个直角三角形绕一条直角边旋转一周所形成的图形.
4、如图,右图是左图表面的展开图,右图已有两个面标出是长方体的下面和右面,请你在右图中把长方体的其他面标出来.
5、
张先生前年在美美家园住宅小区订购了一套住房,图纸如图所示。已知:①该住房的价格a=15000元/平方米;②楼层的电梯、楼梯及门厅前室面积由两户购房者平均负担;③每户配置车库16平方米,每平方米以6000元计算;
根据以上提供的信息和数据计算:
(1)张先生这次购房总共应付款多少元?
(2)若经过两年,该住房价格变为21600元/平方米,那么该小区房价的年平均增长率为多少?
(3)张先生打算对室内进行装修,甲、乙两公司推出不同的优惠方案:在甲公司累计购买10000元材料后,再购买的材料按原价的90%收费;在乙公司累计购买5000元材料后,再购买的材料按原价的95%收费.张先生怎样选择能获得更大优惠?
展开阅读全文