资源描述
课时分层作业(七) 等差数列的性质
(建议用时:60分钟)
[基础达标练]
一、选择题
1.在等差数列{an}中,a1+a9=10,则a5的值为( )
A.5 B.6 C.8 D.10
A [由等差数列的性质,得a1+a9=2a5,
又∵a1+a9=10,即2a5=10,
∴a5=5.]
2.数列{an}满足3+an=an+1且a2+a4+a6=9,则log6(a5+a7+a9)的值是( )
A.-2 B.- C.2 D.
C [∵an+1-an=3,
∴{an}为等差数列,且d=3.
a2+a4+a6=9=3a4,∴a4=3,
a5+a7+a9=3a7=3(a4+3d)=3(3+3×3)=36,
∴log6(a5+a7+a9)=log636=2.]
3.若等差数列{an}的首项a1=5,am=3,则am+2等于( )
A.13 B.3-
C.3- D.5-
B [设等差数列{an}的公差为d,因为
a1=5,am=3,所以d==.
所以am+2=am+2d=3+=3-.]
4.已知等差数列{an}的公差为d(d≠0),且a3+a6+a10+a13=32,若am=8,则m等于( )
A.8 B.4 C.6 D.12
A [因为a3+a6+a10+a13=4a8=32,所以a8=8,即m=8.]
5.下列说法中正确的是( )
A.若a,b,c成等差数列,则a2,b2,c2成等差数列
B.若a,b,c成等差数列,则log2a,log2b,log2c成等差数列
C.若a,b,c成等差数列,则a+2,b+2,c+2成等差数列
D.若a,b,c成等差数列,则2a,2b,2c成等差数列
C [因为a,b,c成等差数列,则2b=a+c,
所以2b+4=a+c+4,即2(b+2)=(a+2)+(c+2),
所以a+2,b+2,c+2成等差数列.]
二、填空题
6.若三个数成等差数列,它们的和为9,平方和为59,则这三个数的积为________.
-21 [设这三个数为a-d,a,a+d,
则
解得或
∴这三个数为-1,3,7或7,3,-1.
∴它们的积为-21.]
7.若a,b,c成等差数列,则二次函数y=ax2-2bx+c的图象与x轴的交点的个数为________.
1或2 [∵a,b,c成等差数列,∴2b=a+c,
∴Δ=4b2-4ac=(a+c)2-4ac=(a-c)2≥0.
∴二次函数y=ax2-2bx+c的图象与x轴的交点个数为1或2.]
8.在通常情况下,从地面到10 km高空,高度每增加1 km,气温就下降某一个固定数值.如果1 km高度的气温是8.5 ℃,5 km高度的气温是-17.5 ℃,则2 km,4 km,8 km高度的气温分别为________、________、________.
2 ℃ -11 ℃ -37 ℃ [用{an}表示自下而上各高度气温组成的等差数列,则a1=8.5,a5=-17.5,由a5=a1+4d=8.5+4d=-17.5,
解得d=-6.5,∴an=15-6.5n.
∴a2=2,a4=-11,a8=-37,即2 km,4 km,8 km高度的气温分别为2 ℃,-11 ℃,-37 ℃.]
三、解答题
9.已知等差数列{an}中,a1+a4+a7=15,a2a4a6=45,求此数列的通项公式.
[解] ∵a1+a7=2a4,a1+a4+a7=3a4=15,∴a4=5.
又∵a2a4a6=45,∴a2a6=9,
即(a4-2d)(a4+2d)=9,(5-2d)(5+2d)=9,
解得d=±2.
若d=2,an=a4+(n-4)d=2n-3;
若d=-2,an=a4+(n-4)d=13-2n.
10.四个数成递增等差数列,中间两数的和为2,首末两项的积为-8,求这四个数.
[解] 设这四个数为a-3d,a-d,a+d,a+3d(公差为2d),
依题意,2a=2,且(a-3d)(a+3d)=-8,
即a=1,a2-9d2=-8,
∴d2=1,∴d=1或d=-1.
又四个数成递增等差数列,所以d>0,
∴d=1,故所求的四个数为-2,0,2,4.
[能力提升练]
1.已知等差数列{an}满足a1+a2+a3+…+a101=0,则有( )
A.a1+a101>0 B.a2+a101<0
C.a3+a99=0 D.a51=51
C [根据性质得:a1+a101=a2+a100=…=a50+a52=2a51,由于a1+a2+a3+…+a101=0,所以a51=0,又因为a3+a99=2a51=0,故选C.]
2.在等差数列{an}中,若a4+a6+a8+a10+a12=120,则a9-a11的值为( )
A.14 B.15 C.16 D.17
C [设公差为d,∵a4+a6+a8+a10+a12=120,
∴5a8=120,a8=24,∴a9-a11=(a8+d)-(a8+3d)=a8=16.]
3.若m≠n,两个等差数列m,a1,a2,n与m,b1,b2,b3,n的公差分别为d1和d2,则的值为________.
[n-m=3d1,d1=(n-m).
又n-m=4d2,d2=(n-m).
∴==.]
4.《九章算术》“竹九节”问题:现有一根9节的竹子,自上而下各节的容积成等差数列,上面4节的容积共为3升,下面3节的容积共为4升,则第5节的容积为________升.
[设自上而下各节的容积构成的等差数列为a1,a2,a3,a4,a5,a6,a7,a8,a9.
则
解得故a5=a1+4d=.]
5.两个等差数列5,8,11,…和3,7,11,…都有100项,那么它们共有多少相同的项?
[解] 设已知的两数列的所有相同的项构成的新数列为{cn},c1=11,
又等差数列5,8,11,…的通项公式为an=3n+2,
等差数列3,7,11,…的通项公式为bn=4n-1.
所以数列{cn}为等差数列,且公差d=12,
所以cn=11+(n-1)×12=12n-1.
又a100=302,b100=399,cn=12n-1≤302,
得n≤25,可知两数列共有25个相同的项.
展开阅读全文