资源描述
2017年江西省抚州市崇仁一中中考数学一模试卷
一、选择题(共6小题,每小题3分,共18分)
1.(3分)实数的值在( )
A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间
2.(3分)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
3.(3分)下列计算中正确的是( )
A.a•a2=a2 B.2a•a=2a2 C.(2a2)2=2a4 D.6a8÷3a2=3a4
4.(3分)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1
5.(3分)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
6.(3分)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
二、填空题(本大题共6个小题,每小题3分,共18分)
7.(3分)如果分式有意义,那么x的取值范围是 .
8.(3分)分解因式:ab﹣a2= .
9.(3分)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .
10.(3分)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为 .
11.(3分)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是 .
12.(3分)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则下列结论:①AC⊥BD;②AC⊥CD;③tan∠DAC=2;④四边形ABCD的面积为31;⑤BD=2.正确的是 .
三.解答题(每小题6分,共30分)
13.(6分)计算:(3﹣π)0+4sin45°﹣+|1﹣|.
14.(6分)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.
15.(6分)用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少黑色棋子?
(2)第几个图形有2013颗黑色棋子?请说明理由.
16.(6分)某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:
(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.
(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.
17.(6分)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是 ;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是 (用树状图或列表法求解).
四.(每小题8分,共32分)
18.(8分)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)
19.(8分)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?
20.(8分)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.
(1)求实数m的取值范围;
(2)当x12﹣x22=0时,求m的值.
21.(8分)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.
(1)求A,B两种商品每件各是多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?
五.(本题10分)
22.(10分)在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
六.题(本题12分)
23.(12分)如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为 ,点C的坐标为 (用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
2017年江西省抚州市崇仁一中中考数学一模试卷
参考答案与试题解析
一、选择题(共6小题,每小题3分,共18分)
1.(3分)(2016•武汉)实数的值在( )
A.0和1之间 B.1和2之间 C.2和3之间 D.3和4之间
【解答】解:∵1<<2,
∴实数的值在:1和2之间.
故选:B.
2.(3分)(2016•北京)神舟十号飞船是我国“神舟”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为( )
A.2.8×103 B.28×103 C.2.8×104 D.0.28×105
【解答】解:28000=1.1×104.
故选:C.
3.(3分)(2017•崇仁县校级一模)下列计算中正确的是( )
A.a•a2=a2 B.2a•a=2a2 C.(2a2)2=2a4 D.6a8÷3a2=3a4
【解答】解:A、原式=a3,不符合题意;
B、原式=2a2,符合题意;
C、原式=4a4,不符合题意;
D、原式=2a6,不符合题意,
故选B
4.(3分)(2016•武汉)已知点A(a,1)与点A′(5,b)关于坐标原点对称,则实数a、b的值是( )
A.a=5,b=1 B.a=﹣5,b=1 C.a=5,b=﹣1 D.a=﹣5,b=﹣1
【解答】解:∵点A(a,1)与点A′(5,b)关于坐标原点对称,
∴a=﹣5,b=﹣1.
故选D.
5.(3分)(2016•北京)甲骨文是我国的一种古代文字,是汉字的早期形式,下列甲骨文中,不是轴对称的是( )
A. B. C. D.
【解答】解:A、是轴对称图形,故本选项错误;
B、是轴对称图形,故本选项错误;
C、是轴对称图形,故本选项错误;
D、不是轴对称图形,故本选项正确.
故选D.
6.(3分)(2016•武汉)平面直角坐标系中,已知A(2,2)、B(4,0).若在坐标轴上取点C,使△ABC为等腰三角形,则满足条件的点C的个数是( )
A.5 B.6 C.7 D.8
【解答】解:∵点A、B的坐标分别为(2,2)、B(4,0).
∴AB=2,
①若AC=AB,以A为圆心,AB为半径画弧与坐标轴有3个交点(含B点),即(0,0)、(4,0)、(0,4),
∵点(0,4)与直线AB共线,
∴满足△ABC是等腰三角形的C点有1个;
②若BC=AB,以B为圆心,BA为半径画弧与坐标轴有2个交点(A点除外),即满足△ABC是等腰三角形的C点有2个;
③若CA=CB,作AB的垂直平分线与坐标轴有两个交点,即满足△ABC是等腰三角形的C点有2个;
综上所述:点C在坐标轴上,△ABC是等腰三角形,符合条件的点C共有5个.
故选A
二、填空题(本大题共6个小题,每小题3分,共18分)
7.(3分)(2016•北京)如果分式有意义,那么x的取值范围是 x≠1 .
【解答】解:由题意,得
x﹣1≠0,
解得x≠1,
故答案为:x≠1.
8.(3分)(2016•无锡)分解因式:ab﹣a2= a(b﹣a) .
【解答】解:ab﹣a2=a(b﹣a).
故答案为:a(b﹣a).
9.(3分)(2016•武汉)一个质地均匀的小正方体,6个面分别标有数字1,1,2,4,5,5,若随机投掷一次小正方体,则朝上一面的数字是5的概率为 .
【解答】解:∵一个质地均匀的小正方体由6个面,其中标有数字5的有2个,
∴随机投掷一次小正方体,则朝上一面的数字是5的概率==.
故答案为:.
10.(3分)(2016•武汉)如图,在▱ABCD中,E为边CD上一点,将△ADE沿AE折叠至△AD′E处,AD′与CE交于点F.若∠B=52°,∠DAE=20°,则∠FED′的大小为 36° .
【解答】解:∵四边形ABCD是平行四边形,
∴∠D=∠B=52°,
由折叠的性质得:∠D′=∠D=52°,∠EAD′=∠DAE=20°,
∴∠AEF=∠D+∠DAE=52°+20°=72°,∠AED′=180°﹣∠EAD′﹣∠D′=108°,
∴∠FED′=108°﹣72°=36°;
故答案为:36°.
11.(3分)(2016•河南)已知A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,该抛物线的顶点坐标是 (1,4) .
【解答】解:∵A(0,3),B(2,3)是抛物线y=﹣x2+bx+c上两点,
∴代入得:,
解得:b=2,c=3,
∴y=﹣x2+2x+3
=﹣(x﹣1)2+4,
顶点坐标为(1,4),
故答案为:(1,4).
12.(3分)(2017•崇仁县校级一模)如图,在四边形ABCD中,∠ABC=90°,AB=3,BC=4,CD=10,DA=,则下列结论:①AC⊥BD;②AC⊥CD;③tan∠DAC=2;④四边形ABCD的面积为31;⑤BD=2.正确的是 ②③④⑤ .
【解答】解:∵∠ABC=90°,AB=3,BC=4,
∴AC==5,
在△ACD中,∵CD=10,DA=5,
∴AC2+CD2=25+100=125=DA2,
∴∠ACD=90°,即AC⊥CD,故①错误,②正确;
在Rt△ACD中,tan∠DAC===2,故③正确;
S四边形ABCD=S△ABC+S△ACD
=AB•BC+AC•CD
=×3×4+×5×10
=31,
故④正确;
作DM⊥BC,交BC延长线于M,如图所示:
则∠M=90°,
∴∠DCM+∠CDM=90°,
∵∠ABC=90°,AB=3,BC=4,
∴AC2=AB2+BC2=25,
∵CD=10,AD=5,
∴AC2+CD2=AD2,
∴△ACD是直角三角形,∠ACD=90°,
∴∠ACB+∠DCM=90°,
∴∠ACB=∠CDM,
∵∠ABC=∠M=90°,
∴△ABC∽△CMD,
∴=,
∴CM=2AB=6,DM=2BC=8,
∴BM=BC+CM=10,
∴BD==2,故⑤正确;
故答案为:②③④⑤.
三.解答题(每小题6分,共30分)
13.(6分)(2016•北京)计算:(3﹣π)0+4sin45°﹣+|1﹣|.
【解答】解:(3﹣π)0+4sin45°﹣+|1﹣|
=1+4×﹣2﹣1
=1﹣2+﹣1
=
14.(6分)(2016•北京)如图,四边形ABCD是平行四边形,AE平分∠BAD,交DC的延长线于点E.求证:DA=DE.
【解答】证明:∵四边形ABCD是平行四边形,
∴AB∥CD,
∴∠E=∠BAE,
∵AE平分∠BAD,
∴∠BAE=∠DAE,
∴∠E=∠DAE,
∴DA=DE.
15.(6分)(2012•宁波)用同样大小的黑色棋子按如图所示的规律摆放:
(1)第5个图形有多少黑色棋子?
(2)第几个图形有2013颗黑色棋子?请说明理由.
【解答】解:(1)第一个图需棋子6,
第二个图需棋子9,
第三个图需棋子12,
第四个图需棋子15,
第五个图需棋子18,
…
第n个图需棋子3(n+1)枚.
答:第5个图形有18颗黑色棋子.
(2)设第n个图形有2013颗黑色棋子,
根据(1)得3(n+1)=2013
解得n=670,
所以第670个图形有2013颗黑色棋子.
16.(6分)(2016•金华)某校组织学生排球垫球训练,训练前后,对每个学生进行考核.现随机抽取部分学生,统计了训练前后两次考核成绩,并按“A,B,C”三个等次绘制了如图不完整的统计图.试根据统计图信息,解答下列问题:
(1)抽取的学生中,训练后“A”等次的人数是多少?并补全统计图.
(2)若学校有600名学生,请估计该校训练后成绩为“A”等次的人数.
【解答】解:(1)∵抽取的人数为21+7+2=30,
∴训练后“A”等次的人数为30﹣2﹣8=20.
补全统计图如图:
(2)600×=400(人).
答:估计该校九年级训练后成绩为“A”等次的人数是400.
17.(6分)(2012•苏州)在3×3的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上.
(1)从A、D、E、F四个点中任意取一点,以所取的这一点及点B、C为顶点画三角形,则所画三角形是等腰三角形的概率是 ;
(2)从A、D、E、F四个点中先后任意取两个不同的点,以所取的这两点及点B、C为顶点画四边形,求所画四边形是平行四边形的概率是 (用树状图或列表法求解).
【解答】解:(1)根据从A、D、E、F四个点中任意取一点,一共有4种可能,只有选取D点时,所画三角形是等腰三角形,
故P(所画三角形是等腰三角形)=;
(2)用“树状图”或利用表格列出所有可能的结果:
∵以点A、E、B、C为顶点及以D、F、B、C为顶点所画的四边形是平行四边形,
∴所画的四边形是平行四边形的概率P==.
故答案为:(1),(2).
四.(每小题8分,共32分)
18.(8分)(2014•山西)如图,点A、B、C表示某旅游景区三个缆车站的位置,线段AB、BC表示连接缆车站的钢缆,已知A、B、C三点在同一铅直平面内,它们的海拔高度AA′,BB′,CC′分别为110米、310米、710米,钢缆AB的坡度i1=1:2,钢缆BC的坡度i2=1:1,景区因改造缆车线路,需要从A到C直线架设一条钢缆,那么钢缆AC的长度是多少米?(注:坡度i是指坡面的铅直高度与水平宽度的比)
【解答】解:过点A作AE⊥CC′于点E,交BB′于点F,过点B作BD⊥CC′于点D,
则△AFB、△BDC、△AEC都是直角三角形,四边形AA′B′F,BB′C′D和BFED都是矩形,
∴BF=BB′﹣B′F=BB′﹣AA′=310﹣110=200,
CD=CC′﹣C′D=CC′﹣BB′=710﹣310=400,
∵i1=1:2,i2=1:1,
∴AF=2BF=400,BD=CD=400,
又∵EF=BD=400,DE=BF=200,
∴AE=AF+EF=800,CE=CD+DE=600,
∴在Rt△AEC中,AC===1000(米).
答:钢缆AC的长度是1000米.
19.(8分)(2012•宁波)如图,已知一次函数与反比例函数的图象交于点A(﹣4,﹣2)和B(a,4).
(1)求反比例函数的解析式和点B的坐标;
(2)根据图象回答,当x在什么范围内时,一次函数的值大于反比例函数的值?
【解答】解:(1)设反比例函数的解析式为y=(k≠0),
∵反比例函数图象经过点A(﹣4,﹣2),
∴﹣2=,
∴k=8,
∴反比例函数的解析式为y=,
∵B(a,4)在y=的图象上,
∴4=,
∴a=2,
∴点B的坐标为B(2,4);
(2)根据图象得,当x>2或﹣4<x<0时,一次函数的值大于反比例函数的值.
20.(8分)(2008•孝感)已知关于x的一元二次方程x2+(2m﹣1)x+m2=0有两个实数根x1和x2.
(1)求实数m的取值范围;
(2)当x12﹣x22=0时,求m的值.
【解答】解:(1)由题意有△=(2m﹣1)2﹣4m2≥0,
解得,
∴实数m的取值范围是;
(2)由两根关系,得根x1+x2=﹣(2m﹣1),x1•x2=m2,
由x12﹣x22=0得(x1+x2)(x1﹣x2)=0,
若x1+x2=0,即﹣(2m﹣1)=0,解得,
∵>,
∴不合题意,舍去,
若x1﹣x2=0,即x1=x2
∴△=0,由(1)知,
故当x12﹣x22=0时,.
21.(8分)(2014•福州)现有A,B两种商品,买2件A商品和1件B商品用了90元,买3件A商品和2件B商品用了160元.
(1)求A,B两种商品每件各是多少元?
(2)如果小亮准备购买A,B两种商品共10件,总费用不超过350元,但不低于300元,问有几种购买方案,哪种方案费用最低?
【解答】解:(1)设A商品每件x元,B商品每件y元,
依题意,得,
解得.
答:A商品每件20元,B商品每件50元.
(2)设小亮准备购买A商品a件,则购买B商品(10﹣a)件
解得5≤a≤6
根据题意,a的值应为整数,所以a=5或a=6.
方案一:当a=5时,购买费用为20×5+50×(10﹣5)=350元;
方案二:当a=6时,购买费用为20×6+50×(10﹣6)=320元;
∵350>320
∴购买A商品6件,B商品4件的费用最低.
答:有两种购买方案,方案一:购买A商品5件,B商品5件;方案二:购买A商品6件,B商品4件,其中方案二费用最低.
五.(本题10分)
22.(10分)(2016•武汉)在△ABC中,P为边AB上一点.
(1)如图1,若∠ACP=∠B,求证:AC2=AP•AB;
(2)若M为CP的中点,AC=2.
①如图2,若∠PBM=∠ACP,AB=3,求BP的长;
②如图3,若∠ABC=45°,∠A=∠BMP=60°,直接写出BP的长.
【解答】解:(1)∵∠ACP=∠B,∠A=∠A,
∴△ACP∽△ABC,
∴,
∴AC2=AP•AB;
(2)①取AP在中点G,连接MG,设AG=x,则PG=x,BG=3﹣x,
∵M是PC的中点,
∴MG∥AC,
∴∠BGM=∠A,
∵∠ACP=∠PBM,
∴△APC∽△GMB,
∴,
即,
∴x=,
∵AB=3,
∴AP=3﹣,
∴PB=;
②过C作CH⊥AB于H,延长AB到E,使BE=BP,
设BP=x.
∵∠ABC=45°,∠A=60°,
∴CH=,HE=+x,
∵CE2=(+(+x)2,
∵PB=BE,PM=CM,
∴BM∥CE,
∴∠PMB=∠PCE=60°=∠A,
∵∠E=∠E,
∴△ECP∽△EAC,
∴,
∴CE2=EP•EA,
∴3+3+x2+2x=2x(x++1),
∴x=﹣1,
∴PB=﹣1.
六.题(本题12分)
23.(12分)(2012•苏州)如图,已知抛物线y=x2﹣(b+1)x+(b是实数且b>2)与x轴的正半轴分别交于点A、B(点A位于点B的左侧),与y轴的正半轴交于点C.
(1)点B的坐标为 (b,0) ,点C的坐标为 (0,) (用含b的代数式表示);
(2)请你探索在第一象限内是否存在点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形?如果存在,求出点P的坐标;如果不存在,请说明理由;
(3)请你进一步探索在第一象限内是否存在点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似(全等可作相似的特殊情况)?如果存在,求出点Q的坐标;如果不存在,请说明理由.
【解答】解:(1)令y=0,即y=x2﹣(b+1)x+=0,
解得:x=1或b,
∵b是实数且b>2,点A位于点B的左侧,
∴点B的坐标为(b,0),
令x=0,
解得:y=,
∴点C的坐标为(0,),
故答案为:(b,0),(0,);
(2)存在,
假设存在这样的点P,使得四边形PCOB的面积等于2b,且△PBC是以点P为直角顶点的等腰直角三角形.
设点P的坐标为(x,y),连接OP.
则S四边形PCOB=S△PCO+S△POB=••x+•b•y=2b,
∴x+4y=16.
过P作PD⊥x轴,PE⊥y轴,垂足分别为D、E,
∴∠PEO=∠EOD=∠ODP=90°.
∴四边形PEOD是矩形.
∴∠EPD=90°.
∴∠EPC=∠DPB.
∴△PEC≌△PDB,∴PE=PD,即x=y.
由解得
由△PEC≌△PDB得EC=DB,即﹣=b﹣,
解得b=>2符合题意.
∴P的坐标为(,);
(3)假设存在这样的点Q,使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
∵∠QAB=∠AOQ+∠AQO,
∴∠QAB>∠AOQ,∠QAB>∠AQO.
∴要使△QOA与△QAB相似,只能∠QAO=∠BAQ=90°,即QA⊥x轴.
∵b>2,
∴AB>OA,
∴∠Q0A>∠ABQ.
∴只能∠AOQ=∠AQB.此时∠OQB=90°,
由QA⊥x轴知QA∥y轴.
∴∠COQ=∠OQA.
∴要使△QOA与△OQC相似,只能∠QCO=90°或∠OQC=90°.
(I)当∠OCQ=90°时,△CQO≌△QOA.
∴AQ=CO=.
由AQ2=OA•AB得:()2=b﹣1.
解得:b=8±4.
∵b>2,
∴b=8+4.
∴点Q的坐标是(1,2+).
(II)当∠OQC=90°时,△OCQ∽△QOA,
∴=,即OQ2=OC•AQ.
又OQ2=OA•OB,
∴OC•AQ=OA•OB.即•AQ=1×b.
解得:AQ=4,此时b=17>2符合题意,
∴点Q的坐标是(1,4).
∴综上可知,存在点Q(1,2+)或Q(1,4),使得△QCO,△QOA和△QAB中的任意两个三角形均相似.
参与本试卷答题和审题的老师有:sd2011;HJJ;sks;星期八;caicl;1987483819;2300680618;HLing;CJX;家有儿女;zjx111;三界无我;放飞梦想;lantin;gbl210;Linaliu;zhangCF;wkd;王学峰;wd1899(排名不分先后)
菁优网
2017年4月8日
第23页(共23页)
展开阅读全文