1、北师大版七年级数学上册达标试卷(word可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、李强同学用棱长为1的正方体在桌面上堆成如图所示的图形,然后把露出的表面都染成红色,则表面被他染成红色的面积为( )A .37 B .33 C .24 D .212、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;用一平面去截这个正方体得到的截面是三角形ABC,则ABC=45;一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;用一平面去
2、截这个正方体得到的截面可能是八边形;正方体平面展开图有11种不同的图形A .1 B .2 C .3 D .43、“节日的焰火”可以说是( )A .面与面交于线 B .点动成线 C .面动成体 D .线动成面4、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面与面交于线5、下列几何体中,由一个曲面和一个圆围成的几何体是( )A .球 B .圆锥 C .圆柱 D .棱柱6、长方形纸板绕它的一条边旋转1周形成的几何体为( )A .圆柱 B .棱柱 C .圆锥 D .球7、如图所示,沿图中虚线旋转一周,能围成的几何体是下面几何体中的 ( )A
3、. B . C . D .8、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )A . B . C . D .9、圆柱是由长方形绕着它的一边所在直线旋转一周所得到的,那么下列四个选项绕直线旋转一周可以得到如图立体图形的是( )A . B . C . D .10、与易拉罐类似的几何体是( )A .圆锥 B .圆柱 C .棱锥 D .棱柱11、下列几何体中,含有曲面的有( )A .1个 B .2个 C .3个 D .4个12、如图是一个几何体的三视图,根据图中提供的数据,计算这个几何体的表面积是( )A . B . C . D .13、在一些常见的几何体正方体、长方体、圆柱、
4、圆锥、球、圆台、六棱柱、六棱锥中属于柱体有( )A .3个 B .4个 C .5个 D .6个14、如图,是直角三角形的高,将直角三角形按以下方式旋转一周可以得到右侧几何体的是( )A .绕着旋转 B .绕着旋转 C .绕着旋转 D .绕着旋转15、下列说法中,联结两点的线段叫做两点之间的距离;(2)用度量法和叠合法都可以比较两个角的大小;(3)铅垂线、三角尺、合页型折纸都可以检验直线和平面垂直:(4)六个面、十二条棱和八个顶点组成的图形都是长方体;你认为正确的个数为( )A .1个 B .2个 C .3个 D .4个二、填空题(每小题4分,共计20分)1、如图所示是一种棱长分别是2cm,3c
5、m,4cm的长方体积木,现要用若干块这样的积木来搭建大长方体,如果用6块积木来搭,那么搭成的大长方体的表面积最小是 .2、某种商品的外包装箱是长方体,其展开图的面积为430平方分米(如图),其中BC=5分米,EF=10分米,则AB的长度为 分米.3、从棱长为4的正方体毛坯的一角,挖去一个棱长为2的小正方体,得到一个如图所示的零件,则这个零件的表面积为 .4、一个圆绕它的直径旋转一周形成的几何体是 5、用10个棱长为acm的正方体摆放成如图的形状,像这样向下逐层累加摆放总共10层,其表面积是 .三、判断题(每小题2分,共计6分)1、体是由面围成的( )2、棱柱侧面的形状可能是一个三角形。( )四
6、、计算题(每小题4分,共计12分)1、一个长方形的两边分别是2cm、3cm,若将这个长方形绕一边所在直线旋转一周后是一个什么几何体?请求出这个几何体的底面积和侧面积2、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积3、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?五、解答题(每小题4分,共计32分)1、如图,是一个几何体从正面、左面、上面看得到的平面图形,判断下面说法的正误(正确的在括号内划,错误的在括号内划
7、)(1)这是一个棱锥 (2)这个几何体有4个面 (3)这个几何体有5个顶点 (4)这个几何体有8条棱 (5)请你再说出一个正确的结论 2、如图,各图中的阴影图形绕着直线I旋转360,各能形成怎样的立体图形?3、一个直角三角尺的两条直角边长是6和8,它的斜边长是10,将这个三角尺绕着它的一边所在的直线旋转一周(温馨提示:结果用表示;你可能用到其中的一个公式,V圆柱=r2h,V球体=R3, V圆锥=r2h)(1)如果绕着它的斜边所在的直线旋转一周形成的几何体是什么?(2)如果绕着它的直角边6所在的直线旋转一周形成的几何体的体积是多少?(3)如果绕着斜边10所在的直线旋转一周形成的几何体的体积与绕着
8、直角边8所在的直线旋转一周形成的几何体的体积哪个大?4、有3个棱长分别是3cm,4cm,5cm的正方体组合成如图所示的图形其露在外面的表面积是多少?(整个立体图形摆放在地上)5、已知RtABC的斜边AB=13cm,一条直角边AC=5cm,以直线AB为轴旋转一周得一个几何体求这个几何体的表面积6、现有一个长为5cm,宽为4cm的长方形,绕它的一边旋转一周,得到的几何体的体积是多少?7、如图,一个正五棱柱的底面边长为2cm,高为4cm(1)这个棱柱共有多少个面?计算它的侧面积;(2)这个棱柱共有多少个顶点?有多少条棱?(3)试用含有n的代数式表示n棱柱的顶点数、面数与棱的条数8、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连