1、北师大版七年级数学上册月考试卷(A4可编辑)(考试时间:120分钟,总分100分)班级:_ 姓名:_ 分数:_一、单选题(每小题2分,共计30分)1、围成下列立体图形的各个面中,每个面都是平面的是( )A . B .C . D .2、小欣同学用纸(如图)折成了个正方体的盒子,里面放了一瓶墨水,混放在下面的盒子里,只凭观察,选出墨水在哪个盒子中( )A . B . C . D .3、下列几何图形中为圆锥的是( ).A . B . C . D .4、下列命题中,假命题是( )A .直角三角形斜边上的中线等于斜边的一半B .等腰三角形顶角的平分线,底边上的中线,底边上的高相互重合C .若,则点B是线
2、段AC的中点D .三角形三条边的垂直平分线的交点叫做这个三角形的外心5、观察下图,把左边的图形绕着给定的直线旋转一周后,可能形成的立体图形是( )A . B . C . D .6、下边的立体图形是由哪个平面图形绕轴旋转一周得到的( )A . B . C . D .7、如图,将长方形ABCD绕虚线l旋转一周,则形成的几何体的体积为( )A .r2h B .2r2h C .3r2h D .4r2h8、下列图形中不是立体图形的是( )A .圆锥 B .圆柱 C .长方形 D .棱柱9、“汽车上雨刷器的运动过程”能说明的数学知识是( )A .点动成线 B .线动成面 C .面动成体 D .面与面交于线
3、10、如图是一个正方体,小敏同学经过研究得到如下5个结论,正确的结论有( )个.用剪刀沿着它的棱剪开这个纸盒,至少要剪7刀,才能展开成平面图形;用一平面去截这个正方体得到的截面是三角形ABC,则ABC=45;一只蚂蚁在一个实心正方体木块P点处想沿着表面爬到C点最近的路只有4条;用一平面去截这个正方体得到的截面可能是八边形;正方体平面展开图有11种不同的图形A .1 B .2 C .3 D .411、十个棱长为的正方体摆放成如图的形状,这个图形的表面积是( )A . B . C . D .12、如图,含有曲面的几何体编号是( )A . B . C . D .13、如图,一个几何体的三视图分别是两
4、个矩形,一个扇形,则这个几何体表面积的大小为( )A .12 B .15 C .12+6 D .15+1214、如图,下面的几何体,可以由下列选项中的哪个图形绕虚线旋转一周后得到( )A . B . C . D .15、用钢笔写字是一个生活中的实例,用数学原理分析,它所属于的现象是( )A .点动成线 B .线动成面 C .线线相交 D .面面相交二、填空题(每小题4分,共计20分)1、一个容积是125dm3的正方体棱长是 dm.2、六个长方体包装盒按“规则方式”打包,所谓“规则方式”是指每相邻两个长方体必须以完全一样的面对接,最后得到的形状是一个更大的长方体,已知每一个小包装盒的长宽高分别为
5、 5、4、3 则按“规则方式”打包后的大长方体的表面积最小是 .3、如图,三棱柱的底面边长都为2 cm,侧棱长为5 cm,则这个三棱柱的侧面展开图的面积为 4、如图,在一次数学活动课上,张明用17个边长为1的小正方形搭成了一个几何体,然后他请王亮用其他同样的小正方体在旁边再搭一个几何体,使王亮所搭几何体恰好可以和张明所搭几何体拼成一个无缝隙的大长方体(不改变张明所搭几何体的形状),那么王亮至少还需要个小立方体,王亮所搭几何体的表面积为 5、已知长方形的长为4cm, 宽3cm, 现将这个长方形绕它的一边所在直线旋转一周,则所得到的几何体的体积为 cm3三、判断题(每小题2分,共计6分)1、体是由
6、面围成的( )2、棱柱侧面的形状可能是一个三角形。( )四、计算题(每小题4分,共计12分)1、有一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱现在有一个长为6cm,宽为5cm的长方形,分别绕它的长、宽所在直线旋转一周,得到不同的圆柱,它们的体积分别是多大?2、已知有一个长为5cm,宽为3cm的长方形,若以这个长方形的一边所在的直线为轴,将它旋转一周,你能求出所得的几何体的表面积吗?3、我们知道,长方形绕着它的一边旋转形成圆柱体,圆柱体的侧面展开图为长方形,现将一个长、宽分别为4cm和3cm的长方形绕着它的宽旋转一周,求形成的圆柱体的表面积五、解答题(每小题4分,共计32分)1、如
7、图所示是长方体的表面展开图,折叠成一个长方体,若AE=FH=14cm,FG=2cm,则该长方体的表面积和体积分别是多少?2、如下图,第二行的图形绕虚线旋转一周,便能形成第一行的某个几何体,用线连一连3、如果一个棱柱一共有12顶点,底边长是侧棱长的一半,并且所有的棱长的和是120cm,求每条侧棱的长4、将一个长方形绕它的一边所在的直线旋转一周,得到的几何体是圆柱,现有一个长是5cm、宽是6cm的长方形,分别绕它的长、宽所在的直线旋转一周,得到不同的圆柱几何体,它们的体积分别是多大?5、把19个边长为2cm的正方体重叠起来,作成如图那样的立体图形,求这个立体图形的表面积6、直角三角形绕着它的一条边旋转一周能得到什么立体图形?有几种情况?7、(1)如图,(1)、(2)、(3)、(4)为四个平面图形,请数一数:每个平面图形各有多少个顶点?多少条边?它们分别围成了多少个区域?请你将结果填入下表(2)观察上表,推断一个平面图形的顶点数,边数,区域数之间有什么关系?8、下面是由些棱长的正方体小木块搭建成的几何体的主视图、俯视图和左视图,请你观察它是由多少块小木块组成的;在俯视图中标出相应位置立方体的个数;求出该几何体的表面积(包含底面)