收藏 分销(赏)

高优指导2021高考数学一轮复习单元质检三导数及其应用理含解析北师大版.doc

上传人:二*** 文档编号:4383023 上传时间:2024-09-18 格式:DOC 页数:5 大小:76KB 下载积分:5 金币
下载 相关 举报
高优指导2021高考数学一轮复习单元质检三导数及其应用理含解析北师大版.doc_第1页
第1页 / 共5页
本文档共5页,全文阅读请下载到手机保存,查看更方便
资源描述
单元质检三 导数及其应用 (时间:100分钟 满分:150分)  单元质检卷第6页   一、选择题(本大题共12小题,每小题5分,共60分) 1.一个物体的运动方程为s=1-t+t2,其中s的单位是米,t的单位是秒,那么物体在3秒末的瞬时速度是(  )                        A.7米/秒 B.6米/秒 C.5米/秒 D.8米/秒 答案:C 解析:根据瞬时速度的意义,可得3 s末的瞬时速度是v=s'|t=3=(-1+2t)|t=3=5. 2.已知函数f(x)=ln x-x,则函数f(x)的单调递减区间是(  ) A.(-∞,1) B.(0,1) C.(-∞,0),(1,+∞) D.(1,+∞) 答案:D 解析:由f(x)=ln x-x,得f'(x)=-1. 令f'(x)=-1<0,又x>0,解得x>1. 3.曲线y=在点(-1,-1)处的切线方程为(  ) A.y=2x+1 B.y=2x-1 C.y=-2x-3 D.y=-2x-2 答案:A 解析:∵y'=,∴曲线在点(-1,-1)处的切线方程的斜率为y'=2. ∴切线方程为y+1=2(x+1),即y=2x+1. 4.若函数y=ex+mx有极值,则实数m的取值范围是(  ) A.m>0 B.m<0 C.m>1 D.m<1 答案:B 解析:求导得y'=ex+m,由于ex>0,若y=ex+mx有极值则必须使y'的值有正有负,故m<0. 5.函数f(x)=x2+x-ln x的零点的个数是(  ) A.0 B.1 C.2 D.3 答案:A 解析:由f'(x)=2x+1-=0, 得x=或x=-1(舍去). 当0<x<时,f'(x)<0,f(x)递减; 当x>时,f'(x)>0,f(x)递增.则f+ln 2>0为f(x)的最小值,所以无零点. 6.设点P在曲线y=ex上,点Q在曲线y=ln(2x)上,则|PQ|的最小值为(  ) A.1-ln 2 B.(1-ln 2) C.1+ln 2 D.(1+ln 2)〚导学号92950627〛 答案:B 解析:由题意知函数y=ex与y=ln(2x)互为反函数,其图像关于直线y=x对称,两曲线上点之间的最小距离就是y=x与y=ex最小距离的2倍,设y=ex上点(x0,y0)处的切线与y=x平行,有=1,x0=ln 2,y0=1, ∴y=x与y=ex的最小距离是(1-ln 2), ∴|PQ|的最小值为(1-ln 2)×2=(1-ln 2). 7.设f(x)是定义在R上的函数,其导函数为f'(x),若f(x)+f'(x)>1,f(0)=2 015,则不等式exf(x)>ex+2 014(其中e为自然对数的底数)的解集为(  ) A.(2 014,+∞) B.(-∞,0)∪(2 014,+∞) C.(-∞,0)∪(0,+∞) D.(0,+∞) 答案:D 解析:设g(x)=exf(x)-ex(x∈R), 则g'(x)=exf(x)+exf'(x)-ex=ex[f(x)+f'(x)-1]. ∵f(x)+f'(x)>1, ∴f(x)+f'(x)-1>0,∴g'(x)>0, ∴y=g(x)在定义域上单调递增. ∵exf(x)>ex+2 014,∴g(x)>2 014. 又∵g(0)=e0f(0)-e0=2 015-1=2 014, ∴g(x)>g(0),∴x>0. 8.(2015太原一模)已知函数f(x)=ln x+tan α的导函数为f'(x),若方程f'(x)=f(x)的根x0小于1,则α的取值范围为(  ) A. B. C. D. 答案:A 解析:∵f(x)=ln x+tan α, ∴f'(x)=,令f(x)=f'(x), 得ln x+tan α=,即tan α=-ln x. 设g(x)=-ln x,显然g(x)在(0,+∞)上单调递减,而当x→0时,g(x)→+∞, ∴要使满足f'(x)=f(x)的根x0<1,只需tan α>g(1)=1, 又∵0<α<,∴α∈. 9.设f(x),g(x)分别是定义在R上的奇函数和偶函数,当x<0时,f'(x)g(x)+f(x)g'(x)>0,且g(3)=0,则不等式f(x)g(x)<0的解集是(  ) A.(-3,0)∪(3,+∞) B.(-3,0)∪(0,3) C.(-∞,-3)∪(3,+∞) D.(-∞,-3)∪(0,3) 答案:D 解析:∵当x<0时,f'(x)g(x)+f(x)·g'(x)>0, 即[f(x)g(x)]'>0, ∴当x<0时,f(x)g(x)为增函数,又g(x)是偶函数且g(3)=0,∴g(-3)=0, ∴f(-3)g(-3)=0.故当x<-3时,f(x)g(x)<0; 由于f(x)g(x)是奇函数,所以当x>0时,f(x)g(x)为增函数,且f(3)g(3)=0,故当0<x<3时,f(x)g(x)<0. 10.(2015浙江温州十校月考)已知f(x)是可导的函数,且f'(x)<f(x)对于x∈R恒成立,则(  ) A.f(1)<ef(0),f(2 014)>e2 014f(0) B.f(1)>ef(0),f(2 014)>e2 014f(0) C.f(1)>ef(0),f(2 014)<e2 014f(0) D.f(1)<ef(0),f(2 014)<e2 014f(0) 答案:D 解析:令g(x)=,则g'(x)=' =<0, 所以函数g(x)=在R上是单调减函数, 所以g(1)<g(0),g(2 014)<g(0), 即, 故f(1)<ef(0),f(2 014)<e2 014f(0). 11.(2015福州质量检测)若函数f(x)=x2+x+1在区间上有极值点,则实数a的取值范围是(  ) A. B. C. D. 答案:C 解析:若f(x)=x2+x+1在区间上有极值点, 则f'(x)=x2-ax+1在区间内有零点,且零点不是f'(x)的图像顶点的横坐标, 由x2-ax+1=0,得a=x+,因为x∈,y=x+的值域是, 当a=2时,f'(x)=x2-2x+1=(x-1)2,不合题意. 所以实数a的取值范围是,故选C. 12.已知函数f(x)=ln x-x+-1,g(x)=x2-2bx+4,若对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),则实数b的取值范围是(  ) A. B.[1,+∞) C. D.[2,+∞)〚导学号92950628〛 答案:C 解析:f'(x)=, 令f'(x)=0得x1=1,x2=3∉(0,2). 当x∈(0,1)时,f'(x)<0,函数f(x)单调递减; 当x∈(1,2)时,f'(x)>0,函数f(x)单调递增, 所以f(x)在(0,2)上的最小值为f(1)=-. 由于“对任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2)”等价于“g(x)在[1,2]上的最小值不大于f(x)在(0,2)上的最小值-”.(*) 又g(x)=(x-b)2+4-b2,x∈[1,2],所以 ①当b<1时,因为[g(x)]min=g(1)=5-2b>0,此时与(*)矛盾; ②当b∈[1,2]时,因为[g(x)]min=4-b2≥0,此时与(*)矛盾; ③当b∈(2,+∞)时, 因为[g(x)]min=g(2)=8-4b, 解不等式8-4b≤-,可得b≥. 综上,b的取值范围是. 二、填空题(本大题共4小题,每小题5分,共20分) 13.曲线y=x3+3x2+6x-1的切线中,斜率最小的切线方程为        .  答案:3x-y-2=0 解析:y'=3x2+6x+6=3(x+1)2+3≥3.当x=-1时,y'min=3;当x=-1时,y=-5. ∴切线方程为y+5=3(x+1),即3x-y-2=0. 14.(2015北京海淀一模)函数y=x-x2的图像与x轴所围成的封闭图形的面积等于     .  答案: 解析:由x-x2=0,得x=0或x=1.因此,所围成的封闭图形的面积为(x-x2)dx=. 15.已知a≤+ln x对于x∈恒成立,则a的最大值为     .  答案:0 解析:设f(x)=+ln x,则f'(x)=, 当x∈时,f'(x)<0,故函数f(x)在上单调递减;当x∈(1,2]时,f'(x)>0,故函数f(x)在(1,2]上单调递增,∴f(x)min=f(1)=0,∴a≤0,即a的最大值为0. 16.已知f(x)=x3+ax2+bx+a2在x=1处有极值为10,则a+b=     .〚导学号92950629〛  答案:-7 解析:f'(x)=3x2+2ax+b,由x=1时,函数取得极值10, 得 联立①②得 当a=4,b=-11时,f'(x)=3x2+8x-11=(3x+11)(x-1)在x=1两侧的符号相反,符合题意; 当a=-3,b=3时,f'(x)=3(x-1)2在x=1两侧的符号相同,所以a=-3,b=3不符合题意,舍去.∴a+b=-7. 三、解答题(本大题共5小题,共70分) 17.(14分)设函数f(x)=6x3+3(a+2)x2+2ax. (1)若f(x)的两个极值点为x1,x2,且x1x2=1,求实数a的值; (2)是否存在实数a,使得f(x)是(-∞,+∞)上的单调函数?若存在,求出a的值;若不存在,说明理由. 解:(1)f'(x)=18x2+6(a+2)x+2a. 由已知有f'(x1)=f'(x2)=0, 从而x1x2==1,所以a=9. (2)由于Δ=36(a+2)2-4×18×2a=36(a2+4)>0, 所以不存在实数a,使得f(x)是(-∞,+∞)上的单调函数.〚导学号92950630〛 18.(14分)(2015河南安阳一中月考)已知函数f(x)=ex-ax(a为常数)的图像与y轴交于点A,曲线y=f(x)在点A处的切线斜率为-1. (1)求a的值及函数f(x)的极值; (2)证明:当x>0时,x2<ex. (1)解:由f(x)=ex-ax,得f'(x)=ex-a, 又f'(0)=1-a=-1,得a=2. 所以f(x)=ex-2x,f'(x)=ex-2. 令f'(x)=0,得x=ln 2, 当x<ln 2时,f'(x)<0,f(x)单调递减, 当x>ln 2时,f'(x)>0,f(x)单调递增, 所以当x=ln 2时,f(x)取得极小值,极小值为f(ln 2)=2-2ln 2=2-ln 4.f(x)无极大值. (2)证明:令g(x)=ex-x2,则g'(x)=ex-2x. 由(1)得g'(x)=f(x)≥f(ln 2)=2-ln 4>0, 故g(x)在R上单调递增,又g(0)=1>0, 所以当x>0,g(x)>g(0)>0,x2<ex.〚导学号92950631〛 19.(14分)(2015重庆,理20)设函数f(x)=(a∈R). (1)若f(x)在x=0处取得极值,确定a的值,并求此时曲线y=f(x)在点(1,f(1))处的切线方程; (2)若f(x)在[3,+∞)上为减函数,求a的取值范围. 解:(1)对f(x)求导得f'(x)= =. 因为f(x)在x=0处取得极值, 所以f'(0)=0,即a=0. 当a=0时,f(x)=,f'(x)=, 故f(1)=,f'(1)=,从而f(x)在点(1,f(1))处的切线方程为y-(x-1),化简得3x-ey=0. (2)由(1)知f'(x)=. 令g(x)=-3x2+(6-a)x+a, 由g(x)=0解得x1=, x2=. 当x<x1时,g(x)<0,即f'(x)<0,故f(x)为减函数; 当x1<x<x2时,g(x)>0,即f'(x)>0,故f(x)为增函数; 当x>x2时,g(x)<0,即f'(x)<0,故f(x)为减函数. 由f(x)在[3,+∞)上为减函数,知x2=≤3,解得a≥-,故a的取值范围为.〚导学号92950632〛 20.(14分)已知函数f(x)=ex-x2+a,x∈R的图像在点x=0处的切线为y=bx.(e≈2.718 28) (1)求函数f(x)的解析式; (2)当x∈R时,求证:f(x)≥-x2+x; (3)若f(x)>kx对任意的x∈(0,+∞)恒成立,求实数k的取值范围. (1)解:∵f(x)=ex-x2+a,∴f'(x)=ex-2x. 由已知 ∴函数f(x)的解析式为f(x)=ex-x2-1. (2)证明:令φ(x)=f(x)+x2-x=ex-x-1,φ'(x)=ex-1. 由φ'(x)=0,得x=0. 当x∈(-∞,0)时,φ'(x)<0,φ(x)单调递减; 当x∈(0,+∞)时,φ'(x)>0,φ(x)单调递增. ∴φ(x)min=φ(0)=0,从而f(x)≥-x2+x. (3)解:f(x)>kx对任意的x∈(0,+∞)恒成立⇔>k对任意的x∈(0,+∞)恒成立, 令g(x)=,x>0, 则g'(0)= =. 由(2)可知当x∈(0,+∞)时,ex-x-1>0恒成立, 由g'(x)>0,得x>1;由g'(x)<0,得0<x<1. 故g(x)的增区间为(1,+∞),减区间为(0,1), 即g(x)min=g(1)=e-2. ∴k<g(x)min=g(1)=e-2, 即实数k的取值范围为(-∞,e-2).〚导学号92950633〛 21.(14分)(2015广东,理19)设a>1,函数f(x)=(1+x2)ex-a. (1)求f(x)的单调区间; (2)证明:f(x)在(-∞,+∞)上仅有一个零点; (3)若曲线y=f(x)在点P处的切线与x轴平行,且在点M(m,n)处的切线与直线OP平行(O是坐标原点),证明:m≤-1. 解:(1)由题意可知函数f(x)的定义域为R,f'(x)=(1+x2)'ex+(1+x2)·(ex)'=(1+x)2ex≥0,故函数f(x)的单调递增区间为(-∞,+∞),无单调递减区间. (2)∵a>1,∴f(0)=1-a<0,且f(a)=(1+a2)ea-a>1+a2-a>2a-a=a>0. ∴函数f(x)在区间(0,a)上存在零点. 又由(1)知函数f(x)在(-∞,+∞)上单调递增, ∴函数f(x)在(-∞,+∞)上仅有一个零点. (3)由(1)及f'(x)=0,得x=-1. 又f(-1)=-a,即P, ∴kOP==a-. 又f'(m)=(1+m)2em,∴(1+m)2em=a-. 令g(m)=em-m-1,则g'(m)=em-1, ∴由g'(m)>0,得m>0,由g'(m)<0,得m<0. ∴函数g(m)在(-∞,0)上单调递减,在(0,+∞)上单调递增. ∴g(m)min=g(0)=0,即g(m)≥0在R上恒成立, 即em≥m+1. ∴a-=(1+m)2em≥(1+m)2(1+m)=(1+m)3, 即≥1+m. 故m≤-1.〚导学号92950634〛 5
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 考试专区 > 高考

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2026 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服