收藏 分销(赏)

七年级下册数学三角形全等动点问题.doc

上传人:精**** 文档编号:4370920 上传时间:2024-09-14 格式:DOC 页数:16 大小:450.50KB
下载 相关 举报
七年级下册数学三角形全等动点问题.doc_第1页
第1页 / 共16页
七年级下册数学三角形全等动点问题.doc_第2页
第2页 / 共16页
七年级下册数学三角形全等动点问题.doc_第3页
第3页 / 共16页
七年级下册数学三角形全等动点问题.doc_第4页
第4页 / 共16页
七年级下册数学三角形全等动点问题.doc_第5页
第5页 / 共16页
点击查看更多>>
资源描述

1、七年级下册数学三角形全等动点问题 初一数学全等三角形之动点问题专题(B类)一、 考点、热点回顾动点型问题是近年来中考的一个热点问题。动态几何问题就是以几何知识和具体的几何图形为背景,渗透运动变化的观点,通过点、线、形的运动,图形的平移、翻折、旋转等,对运动变化过程伴随的数量关系和图形的位置关系等进行探究。动点型问题集几何与代数知识于一体,数形结合,有较强的综合性,题目灵活多变,动中有静,动静结合,能够在运动变化中发展学生空间想象能力,综合分析能力。等边三角形中的动点问题是首先从三角形一边上的单动点运动,引起三角形的边与角的变化,判断三角形的形状变化;其次探讨三角形两边上的双动点运动,引起三角形

2、的角与边的变化,再从在三角边上运动到三角形的边的延长线上运动,由三角形的形状探究到三角形的面积的探究等。本设计是以等边三角形为主线,点的运动引起边、角的变化,三角形的形状的判断及三角形面积的大小,抓住图形中“变”和“不变”,以“不变的”来解决“变”,以达到“以静制动”,变“动态问题”为“静态问题”来解。对学生分析问题的能力,对图形的想象能力,动态思维能力的培养和提高有着积极的促进作用。 本节课的教学设计,注意到了问题的层次性,由浅入深,由简单到复杂,从给定结论到结论开放,以等边三角形为载体,动点在三角形的边、延长线上运动等问题串的形式,层层递进,环环相扣,让不同的学生都有收收获,有所成功,还体

3、现出了分类讨论、等积变换、三角函数等思想方法。 二、 典型例题1、单动点问题 引例:已知,如图ABC是边长3cm的等边三角形. 动点P以1cm/s的速度从点A出发,沿线段AB向点B运动. 设点P的运动时间为(s),那么t=_时,PBC是直角 三角形?2、双动点问题 引例:已知,如图ABC是边长3cm的等边三角形. 动点P从点A出发,沿AB向点B运动,动点Q从点B出发,沿BC向点C运动,如果动点P、Q都以1cm/s的速度同时出发. 设运动时间为t(s),那么t为何值时,PBQ是直角三角形?巩固练习,拓展思维已知,如图ABC是边长3cm的等边三角形. 动点P从点A出发,沿AB向点B运动,动点Q从点

4、C出发,沿射线BC方向运动. 连接PQ交AC于D. 如果动点P、Q都以1cm/s的速度同时出发.设运动时间为t(s),那么 当t为何值时,DCQ是等腰三角形?变式练习:1、已知,如图ABC是边长3cm的等边三角形.动点P从点A出发,沿AB向点B运动,动点Q从点C出发,沿射线BC方向运动. 连接PQ交AC于D. 如果动点P、Q都以1cm/s的速度同时出发. 设运动时间为t(s),连接PC.请探究:在点P、Q的运动过程中PCD和QCD的面积是否相等?变式练习:2、已知等边三角形ABC,(1)动点P从点A出发,沿线段AB向点B运动,动点Q从点B出发,沿线段BC向点C运动,连接CP、AQ交于M,如果动

5、点P、Q都以相同的速度同时出发,则AMP=_度。(2)若动点P、Q继续运动,分别沿射线AB、BC方向运动,.AMP=60的结论还成立吗?二、 实战训练1、如图,在等腰ACB中,ACBC5,AB8,D为底边AB上一动点(不与点A,B重合),DEAC,DFBC,垂足分别为E,F,则DEDF 2、如图,在等腰RtABC中,ACB=90,AC=CB,F是AB边上的中点,点D、E分别在AC、BC边上运动,且始终保持AD=CE连接DE、DF、EF(1)求证:ADFCEF(2)试证明DFE是等腰直角三角形 3、如图,在等边的顶点A、C处各有一只蜗牛,它们同时出发,分别以每分钟1各单位的速度油A向B和由C向A

6、爬行,其中一只蜗牛爬到终点时,另一只也停止运动,经过t分钟后,它们分别爬行到D,E处,请问(1)在爬行过程中,CD和BE始终相等吗?(2)若蜗牛沿着AB和CA的延长线爬行,EB与CD交于点Q,其他条件不变,如图(2)所示,蜗牛爬行过程中 的大小条件不变,求证:(3)如果将原题中“由C向A爬行”改为“沿着BC的延长线爬行,连接DE交AC于F”,其他条件不变,则爬行过程中,DF始终等于EF是否正确 4、 如图1,若ABC和ADE为等边三角形,M,N分别EB,CD的中点,易证:CD=BE,AMN是等边三角形 (1)当把ADE绕A点旋转到图2的位置时,CD=BE是否仍然成立?若成立请证明,若不成立请说

7、明理由; (2)当ADE绕A点旋转到图3的位置时,AMN是否还是等边三角形?若是,请给出证明,并求出当AB=2AD时,ADE与ABC及AMN的面积之比;若不是,请说明理由图1 图2 图3图85、如图,已知中,厘米,厘米,点为的中点(1)如果点P在线段BC上以3厘米/秒的速度由B点向C点运动,同时,点Q在线段CA上由C点向A点运动若点Q的运动速度与点P的运动速度相等,经过1秒后,与是否全等,请说明理由;若点Q的运动速度与点P的运动速度不相等,当点Q的运动速度为多少时,能够使与全等?(2)若点Q以中的运动速度从点C出发,点P以原来的运动速度从点B同时出发,都逆时针沿三边运动,求经过多长时间点P与点

8、Q第一次在的哪条边上相遇?AQCDBP6、(2009年本溪)在中,点是直线上一点(不与重合),以为一边在的右侧作,使,连接(1)如图1,当点在线段上,如果,则 度;(2)设,如图2,当点在线段上移动,则之间有怎样的数量关系?请说明理由;当点在直线上移动,则之间有怎样的数量关系?请直接写出你的结论AEEACCDDBB图1图2AA备用图BCBC备用图7、 如图a,ABC和CEF是两个大小不等的等边三角形,且有一个公共顶点C,连接AF和BE.(1)线段AF和BE有怎样的大小关系?请证明你的结论; (2)将图a中的CEF绕点C旋转一定的角度,得到图b,(1)中的结论还成立吗?作出判断并说明理由; (3

9、)若将图a中的ABC绕点C旋转一定的角度,请你画出一个变换后的图形c(草图即可),(1)中的结论还成立吗?作出判断不必说明理由. 8、已知,如图所示,在和中,且点在一条直线上,连接分别为的中点(1)求证:;CENDABM图CAEMBDN图(2)在图的基础上,将绕点按顺时针方向旋转,其他条件不变,得到图所示的图形请直接写出(1)中的两个结论是否仍然成立. 9、 直线CD经过的顶点C,CA=CBE、F分别是直线CD上两点,且(1)若直线CD经过的内部,且E、F在射线CD上,请解决下面两个问题:如图1,若,则 (填“”,“”或“”号);如图2,若,若使中的结论仍然成立,则 与 应满足的关系是 ;(2

10、)如图3,若直线CD经过的外部,请探究EF、与BE、AF三条线段的数量关系,并给予证明ABCEFDDABCEFADFCEB图1图2图310、 如图1,已知正方形的边在正方形的边上,连接,.(1)试猜想与有怎样的位置关系,并证明你的结论;(2)将正方形绕点按顺时针方向旋转,使点落在边上,如图2,连接和.你认为(1)中的结论是否还成立?若成立,给出证明;若不成立,请说明理由.附加题之等腰三角形(中考重难点之一)考点1:等腰三角形性质的应用1. 如图,中,是中点,与交于,与 交于求证:,2. 两个全等的含,角的三角板和三角板,如图所示放置,三点在一条直线上,连结,取的中点,连结试判断的形状,并说明理

11、由考点2:等腰直角三角形(45度的联想)1. 如图1,四边形ABCD是正方形,M是AB延长线上一点。直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A,B重合),另一条直角边与CBM的平分线BF相交于点F. 如图141,当点E在AB边的中点位置时: 通过测量DE,EF的长度,猜想DE与EF满足的数量关系是 ; 连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ; 请证明你的上述两猜想. 如图142,当点E在AB边上的任意位置时,请你在AD边上找到一点N, 使得NE=BF,进而猜想此时DE与EF有怎样的数量关系并证明2. 在RtABC中,ACBC,ACB90,D是A

12、C的中点,DGAC交AB于点G.(1)如图1,E为线段DC上任意一点,点F在线段DG上,且DE=DF,连结EF与 CF,过点F作FHFC,交直线AB于点H求证:DG=DC判断FH与FC的数量关系并加以证明(2)若E为线段DC的延长线上任意一点,点F在射线DG上,(1)中的其他条件不变,借助图2画出图形。在你所画图形中找出一对全等三角形,并判断你在(1)中得出的结论是否发生改变(本小题直接写出结论,不必证明)图1图2同类变式: 已知:ABC为等边三角形,M是BC延长线上一点,直角三角尺的一条直角边经过点A,且60角的顶点E在BC上滑动,(点E不与点B、C重合),斜边与ACM的平分线CF交于点F(1)如图(1)当点E在BC边得中点位置时 猜想AE与EF满足的数量关系是 . 连结点E与边得中点,猜想和满足的数量关系是.请证明你的上述猜想;()如图()当点在边得任意位置时,和EF有怎样的数量关系,并说明你的理由?E四、课后反馈教学进度: 学生掌握情况: 存在问题及改进措施:

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服