1、合工大药物化学期末考试复习提纲合工大药物化学期末考试复习提纲二、通用名,结构,主要药理作用2.1 由中文通用名导出结构式,并说明其主要药理作用(熟记,结构式中不能有任何错误)1. 吲哚美辛 2. 阿司匹林 3. 对乙酰氨基酚4. 布洛芬 8. 氢化可的松 9. 地塞米松10. 地西泮 11. 异戊巴比妥 12. 苯巴比妥13 氯丙嗪 14. 普萘洛尔 15. 普鲁卡因16. 利多卡因 17. 左炔诺孕酮 18. 肾上腺素19. 异丙肾上腺素 20. 麻黄碱 21. 氟尿嘧啶22. 青霉素G 23. 6-APA 24. 己烯雌酚25. 环丙沙星 26 诺氟沙星 27. 克拉维酸28. 氨苄青霉素
2、(氨苄西林) 29. 奥沙西泮 30. 头孢氨苄31. 磺胺嘧啶 32. 硝苯地平 34. 羟布宗 35. 雷尼替丁 37. 甲苯磺丁脲 38. 甲氧苄啶 39. 环磷酰胺 40. 麻黄碱 2.2 由结构式导出中文通用名(理解,记忆)1. 哌替啶 2. 头孢羟氨苄 3. 替马西泮4. 苯妥英钠 5. 氟哌啶醇 6. 氢氯噻嗪 7. 二甲双胍 8. 氨氯地平 9. 氯贝胆碱10. 西咪替丁 11. 卡托普利 12. 法莫替丁13. 奥美拉唑 14. 他莫昔芬 15. 氯沙坦16. 炔雌醇 17. 炔诺酮 18. 甲睾酮19. 米非司酮 20. 左氧氟沙星 21. 吗啡22. 溴新斯的明 23.
3、阿托品 24. 美沙酮25. 纳洛酮 26. 盐酸可乐定 27. 维生素C28. 洛伐他汀 29. 沙丁胺醇 30. 7-ACA31. 氯苯那敏 32. 西替利嗪 33. 萘普生34. 氯霉素 35. 吡罗昔康 36. 顺铂37. 奥沙利铂 38. 头孢噻肟钠 39. 睾酮40. 磺胺甲噁唑 41. 氟康唑 42. 阿苯达唑43. 氯喹 44. 螺内酯 45. 巯嘌呤46. 氮芥 三、填空题1. 根据药物在体内的作用方式,把药物分为(结构特异性药物)和(结构非特异性药物)(p478)2. 光学异构体在活性上的表现可有:( 作用完全相同)、作用相同但强度不同、(作用方式不同)等几种类型。(p48
4、1)3. Prodrug(p489):前体药物,将药物分子经结构修饰后,使其在体外活性较小或无活性,进入体内后经酶或非酶作用,释放出原药物分子发挥作用,这种结构修饰后的药物称作前体药物,简称前药。(p489)4. 与巴比妥类药物活性相关的理化性质主要是药物的(酸性解离常数pKa)和(脂水分配系数)。5. 抗抑郁药按作用机制可分为(单胺氧化酶抑制剂)、(去甲肾上腺素重摄取抑制剂)和(5-羟色胺重摄取抑制剂)。(p51)6. 吗啡3-位酚羟基除具有酸性外,还易被氧化,空气和光照氧化生成(伪吗啡)和(N-氧化吗啡),应避光保存。(p62)7. 可用作戒毒药的合成镇痛药为(美沙酮)。(p68)8. 普
5、鲁卡因在体内水解生成(对氨基苯甲酸)和(二乙氨基乙醇)。9. 下列药物(东莨菪碱,阿托品,樟柳碱,山莨菪碱)的中枢作用依次(减弱)(填“增强”或“减弱”)。10. (洛伐他汀)是第一个上式的HMG-CoA还原酶抑制剂,是无活性的(前药),在体内水解为-羟基酸衍生物才有抑酶活性。(p187)11. 炔诺酮的18位引入(甲基),得到的左旋体口服有效,成为(左炔诺孕酮),是第一个实现工业化的全合成甾体激素。12. 对磺胺类药物作用机制进行研究后,提出了(代谢拮抗)学说,开辟了寻找新药的途径。13. 当磺胺类药物与甲氧苄啶联合应用时,可同时抑制(二氢叶酸合成酶)和(二氢叶酸还原酶),形成协同抗菌作用。
6、P35314. 临床上以(磺胺甲噁唑)和(甲氧苄啶)组成复方新诺明,用于治疗呼吸道感染等。P35415. 奥格门汀是由(阿莫西林)和-内酰胺酶抑制剂(克拉维酸钾)组成复方制剂。P31716. 将(氨苄青霉素)和(舒巴坦)以1:1的形式以次甲基相连形成双酯结构的前药,称为舒他新林。P31717. 将(对乙酰氨基酚)的酚羟基与(阿司匹林)的羧基成酯的前药称为贝诺酯。P23918. 四环素在pH2-6条件下,C-4二甲氨基易发生(可逆的差相异构化)反应,活性降低。P32119. 第一个用于临床的-内酰胺酶抑制剂是(克拉维酸)。20. 氮芥类药物的结构可以分为两部分:(烷化剂部分)和(载体部分)。21
7、. 与奎宁互为非对映异构体的药物是(奎尼丁),在临床上用于(抗心律失常)。奎宁引起的毒性反应称为(金鸡纳反应)。P380,16122. 奎宁服用后易引起低血糖,其原因是能促进(胰岛素)的释放。P38023. 将奎宁的仲醇基与(氯甲酸乙酯)反应,生成优奎宁,也称无味奎宁。P38024. 花生四烯酸主要代谢途径有(环氧合酶)途径和(脂氧酶)途径。25. 保泰松的体内代谢物为(羟布宗),同样具有抗炎抗风湿作用,且不良反应小。26. 非拉西丁的代谢产物(对乙酰氨基酚)的毒性及副作用都低,临床广泛用于镇痛和退热。P24027. 肾上腺素受体激动剂苯环上引入羟基可(增强)拟肾上腺素作用。3,4-二羟基化合
8、物比含一个羟基的化合物活性大;但儿茶酚胺结构易被(MAO)和(COMT)催化代谢破坏,一般作用时间短暂,不宜口服。P10928. 奥沙西泮是(地西泮)的体内活性代谢物。29. 半合成青霉素是以(6-氨基青霉烷酸)为基本原料与各种酰基的侧链缩合而成。常用的缩合方法包括(酰氯法)、(酸酐法)、(DCC法)和固相酶法。P30630. 巴比妥类药物具有(5,5-二取代基环酰脲)结构,因而具有水解性。31. 奥美拉唑是第一个上市的(质子泵 )抑制剂。32. 维生素C分子中含(2 )个手性碳原子 33. 巴比妥类药物的钠盐在空气中放置易析出沉淀是由于(吸收空气中的CO2 )。34. 地西泮体内水解代谢有两
9、个部位,其中( 4,5 )位的水解反应为可逆的,不影响生物利用度。35. 奎尼丁抑制( 钠 )离子通道而用作抗心律失常药。36. 硝苯地平属于(二氢吡啶)类结构的钙拮抗剂。37. 甲氧苄啶是磺胺药的增效剂是由于(抑制二氢叶酸还原酶使细菌代谢受到双重阻断)。38. 在雄甾烷母核中,引入17乙炔基可使活性向( 孕激素)转化。39. 维生素C在水溶液中可发生异构化,存在三种形式,其中(烯醇 )形式最稳定。40. 拟肾上腺素药物中,氨基氮原子上的取代基改变显著影响和受体效应,一定范围内,取代基增大,产生的影响是(受体效应减弱,受体效应增强,且对2受体选择性增高 )。41. 氟尿嘧啶属于(嘧啶)拮抗剂,
10、是治疗实体瘤的首选药。42. 睾酮引入(17-甲基 )得到的甲睾酮,是常用的口服雄激素。四、合成题(理解、推理)1. 异戊巴比妥 2. 地西泮 3. 由青霉素G合成氨苄青霉素钠 4. 肾上腺素 5. 利多卡因 6. 硝苯地平 7. 奥美拉唑 8. 吲哚美辛 9. 环丙沙星10. 布洛芬 11. 氯丙嗪(p43) 12. 苯巴比妥13. 普萘洛尔五、选择题(只考A型选择题,主要考察典型药物,特别是重点药物的理化性质等,参阅试题库,这里略)六、问答题1. 何谓前药原理?前药原理能改善药物的哪些性质?举例说明(p490)答:前药 (pro-drug)原理系指用化学方法将有活性的原药转变成无活性衍生物
11、,在体内经酶促或非酶促反应释放出原药而发挥疗效 。药物做成前药后,可以达到如下目的:(1)改善药物吸收;(2)增加稳定性;(3)增加脂溶性;(4)提高药物的作用选择性;(5)延长药物作用时间;(6)消除不良味觉;(7)配伍增效等。举例:普洛加胺(Pargabide)在体内转化成-氨基丁酰胺,成GABA(-氨基丁酸)受体的激动剂,对癫痫、痉挛状态和运动失调有良好的治疗效果。由于-氨基丁酰胺的极性太大,直接作为药物使用,因不能透过血脑屏障进入中枢,即不能达到作用部位,起到药物的作用。为此做成希夫碱前药,即普洛加胺,使极性减小,可以进入血脑屏障。备注:(1)本教材中典型的前药实例:氟奋乃静p39,波
12、引洛尔p144,洛伐他汀p187,环磷酰胺p261,舒他新林p317,琥乙红霉素p328,琥珀氯霉素p334,优奎宁p380。注意上述药物做成前药的目的不完全相同(2)本教材中软药的实例:苯磺阿曲库铵p103,艾司洛尔p144举例说明前药在药物设计中的应用。例1:氨苄西林口服生物利用度低,将羧基成酯得到匹氨西林,体内吸水容易进行,在血液迅速产生原药氨苄西林发挥作用。例2:将肾上腺素分子中的酚羟基成酯修饰得到地匹福林减少肾上腺素在局部应用时引起的对心脏的副作用。例3:将地塞米松分子中21位羟基与磷酸成酯,得到地塞米松磷酸酯钠盐,可提高其水溶性,用于静脉给药。例4:甲硝唑分子中羟基与磷酸成酯增加其
13、水溶性。例5:将支气管舒张剂特布他林分子中的酚羟基与N,N-二甲基甲酸成酯修饰得到前药班布特罗避免了首过代谢,提高了药物的活性及其选择性。例6:改善药物在特定部位的释放利用二氢吡啶为载体(N-甲基二氢吡啶甲酸)与含有-NH2的药物形成酰胺前药,提高了药物的脂溶性,使该前药在体内迅速分布于脑内及全身,然后被酶促氧化成季铵盐,除脑以外的其他组织的季铵盐迅速从体消除,而在脑内的季铵盐酰胺键被酶促裂解较慢,达到在脑内持续释放母体药物的目的。例7 :掩盖药物的不良气味如氯霉素分子中的羟基与棕榈酸成酯得到氯霉素棕榈酸酯,无味氯霉素。例8:前药修饰将奋乃静分子中的羟基修饰成为庚酸酯在体内缓慢释放出母体药物奋
14、乃静而达到延长作用时间的目的。例9:将两个药物拼合制成前药而发挥协同作用例如将氨苄西林与舒正坦拼合成为前药舒他西林,进入体内后经酯酶分解为氨苄西林和舒正坦发挥药物配伍作用,增强氨苄西林的抗菌活性。3. 经典H1受体拮抗剂有何突出的不良反应?第二代H1受体拮抗剂是如何克服这一缺点?举例说明。答:经典H1受体拮抗剂最突出的毒副反应是中枢抑制作用,可引起明显的镇静、嗜睡,是因为这些药物易通过血脑屏障,并与脑内H1受体有高度亲和力,由此拮抗脑内的内源性组胺引起的觉醒反应而致中枢抑制。第二代H1受体拮抗剂通过限制药物进入中枢和提高药物对外周H1受体的选择性来发展新型非镇静性抗组胺药。如盐酸西替利嗪就是通
15、过引入极性或易电离基团使药物难以通过血脑屏障进入中枢,克服镇静作用的。4. 简述代谢拮抗原理,举例说明代谢拮抗原理在药物设计中的应用。P352答:所谓代谢拮抗(Metabolic Antagonism)就是设计与生物体内基本代谢物的结构有某种程度相似的化合物,使之竞争性地和特定的酶相作用,干扰基本代谢物的被利用,从而干扰生物大分子的合成;或以伪代谢物的身份掺入生物大分子的合成中,形成伪生物大分子,导致致死合成(Lethal Synthesis),从而影响细胞的生长。例如:尿嘧啶是体内正常的嘧啶碱基,其掺入肿瘤组织的速度比其它嘧啶快,利用生物电子等排原理,以氟原子代替尿嘧啶5位上的氢原子,得到氟
16、尿嘧啶。5. 为什么环磷酰胺对肿瘤细胞毒性较大,而对人体正常细胞毒性较小?p261答:因为肿瘤细胞中的环磷酰胺酶的活性高于正常细胞,环磷酰胺本身无药理作用,经环磷酰胺酶作用活化后,才有抗肿瘤活性,在体内活化的部位不是肝脏而是肿瘤细胞,所以针对性较强,毒性较小。试从环磷酰胺在正常组织及肿瘤组织中代谢产物的不同说明为什么其毒性比其他氮芥类药物小。环磷酰胺是利用前药化原理设计出来的药物。由于氮原子上连有吸电子的磷酰基,降低了氮原子的亲核性,因此在体外对肿瘤细胞无效。进入体内后,由于正常组织和肿瘤组织中所含的酶的不同,导致代谢产物不同,在正常组织中的代谢产物是无毒的4-酮基环磷酰胺和羧基化合物,而肿瘤
17、组织中缺乏正常组织所具有的酶,代谢途径不同,经逆Michael 加成反应生成丙烯醛和磷酰氮芥,后者经非酶水解生成去甲氮芥,这三个代谢产物都是较强的烷化剂。因此环磷酰胺对正常组织的影响较小,其毒性比其它氮芥类药物小。6. 天然青霉素G有哪些缺点?试述半合成青霉素的结构改造方法。答:天然青霉素G的缺点为对酸不稳定,不能口服,只能注射给药;抗菌谱比较狭窄,仅对革兰阳性菌的效果好;细菌易对其产生耐药性;有严重的过敏性反应。在青霉素的侧链上引入吸电子基团,阻止侧链羰基电子向-内酰胺环的转移,增加了对酸的稳定性,得到一系列耐酸青霉素。在青霉素的侧链上引入较大体积的基团,阻止了化合物与酶活性中心的结合。又由
18、于空间阻碍限制酰胺侧链R与羧基间的单键旋转,从而降低了青霉素分子与酶活性中心作用的适应性,因此药物对酶的稳定性增加。在青霉素的侧链上引入亲水性的基团(如氨基,羧基或磺酸基等),扩大了抗菌谱,不仅对革兰阳性菌有效,对多数革兰阴性菌也有效。7. 试说明耐酸、耐酶、广谱青霉素的结构特点,并举例。答:耐酸青霉素的侧链上大都具有吸电子基团,如非奈西林、阿度西林等;耐酶青霉素的侧链上都有较大体积的基团取代,如苯唑西林、甲氧西林等;广谱青霉素的侧链中都具有亲水性的基团(如氨基,羧基或磺酸基等),如阿莫西林、羧苄西林等。8. 举例说明如何对青霉素的结构进行改造,得到耐酸耐酶和抗菌谱广的半合成抗生素,并说明设计
19、思路。 (写出青霉素类抗生素的基本结构,并举例说明耐酸、耐酶和广谱的半合成青霉素的设计思路。)答:第一类是耐酸青霉素,研究中发现Penicillin V的6位侧链的酰胺基上是苯氧甲基(C6H5OCH2-),苯氧甲基是吸电子基团,可降低羰基氧原子的电子云密度,阻止了羰基电子向-内酰胺环的转移,所以对酸稳定。根据此原理在6位侧链酰胺基-位引入吸电子基团,设计合成了耐酸青霉素,如:非奈西林。 第二类是耐酶青霉素。青霉素产生耐药性的原因之一是细菌(主要是革兰阳性菌)产生的-内酰胺酶使青霉素发生分解而失效。发现三苯甲基青霉素具较大的空间位阻,可以阻止药物与酶的活性中心作用,从而保护了分子中的-内酰胺环。
20、根据这种空间位阻的设想,合成侧链上有较大的取代基的青霉素衍生物,如甲氧西林对青霉素酶稳定。另外在6-位引入甲氧基或甲酰胺基,对-内酰胺酶的进攻形成位阻可增加-内酰胺环的稳定性而得到耐酶抗生素,如苯唑西林钠。R药物特性R药物特性青霉素V耐酸非奈西林耐酸三苯甲基青霉素耐酶甲氧西林耐酶氨苄西林广谱阿莫西林广谱第三类是广谱青霉素,在青霉素的侧链导入-氨基,得到氨苄西林,由于-氨基的引入改变了分子的极性,使药物容易透过细菌细胞膜,故扩大了抗菌谱,对革兰氏阳性、阴性菌都有强效。用羧基和磺酸基代替氨基,如羧苄西林,磺苄西林进一步扩大了抗菌谱。说明酰基-位上引入极性亲水性基团NH2、COOH、SO3H等基团,
21、能增强对青霉素结合蛋白的亲和力,故可扩大抗菌谱。9. 为什么将含苯胺类的非那西丁淘汰而保留了对乙酰氨基酚?答:为苯胺类药物代谢规律所决定,非那西丁的代谢物具有毒性,不易被排除而产生毒性,对乙酰氨基酚的代谢物较非那西丁易于排出体外。10. 从现代科学的角度分析将阿司匹林制成钙盐,是否能降低胃肠道的副作用?答:阿司匹林的作用靶点为环氧酶,其钙盐不改变其作用靶点,只能改变其溶解度,副作用产生的本质是抑制胃壁的前列腺素合成。11. 从保泰松的代谢过程的研究中,说明如何从药物代谢过程发现新药?答:在保泰松代谢过程的许多产物具有抗炎活性和抗痛风活性,从药物代谢产物发现新药是新药开发的常见方法。因此依据药物
22、的代谢规律,观察代谢的生物活性变化,将有苗头的代谢物进行研究,即有可能发现新药。12. 为什么氟尿嘧啶是一个有效的抗肿瘤药物?答:尿嘧啶掺入肿瘤组织的速度较其他嘧啶快,利用生物电子等排原理,以氟原子取代氢原子合成氟尿嘧啶,因为氟原子的半径和氢原子半径相近,氟化物的体积与原化合物几乎相等,加之C-F键特别稳定,在代谢过程中不易分解,分子水平代替正常代谢物,从而抑制DNA的合成,最后肿瘤死亡。13. 奥格门汀是由哪两种药物组成?说明两者合用起增效作用的原理。答:奥格门汀是由克拉维酸钾和阿莫西林所组成的复方制剂。阿莫西林为半合成的广谱青霉素,通过抑制细菌细胞壁的合成而发挥抗菌作用,但会被细菌所产生的-内酰胺酶水解而失活。克拉维酸钾是有效的-内酰胺酶抑制剂,可与多数-内酰胺酶牢固结合,可使阿莫西林免受-内酰胺酶的钝化,用于治疗耐阿莫西林细菌所引起的感染。