收藏 分销(赏)

数列知识点及常用结论.doc

上传人:快乐****生活 文档编号:4360180 上传时间:2024-09-13 格式:DOC 页数:4 大小:39.50KB
下载 相关 举报
数列知识点及常用结论.doc_第1页
第1页 / 共4页
数列知识点及常用结论.doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
数列知识点及常用结论 一、等差数列 (1)等差数列得基本公式 ①通项公式: (从第1项开始为等差) (从第m项开始为等差) ②前项与公式: (2)证明等差数列得法方 ①定义法:对任意得n,都有(d为常数)为等差数列 ②等差中项法:(n)为等差数列 ③通项公式法:=pn+q (p,q为常数且p≠0) 为等差数列 即:通项公式位n得一次函数,公差,首项 ④前项与公式法: (p, q为常数) 为等差数列 即:关于n得不含常数项得二次函数 (3)常用结论 ①若数列,为等差数列,则数列,,, (k, b为非零常数)均为等差数列、 ②若m+n=p+q (m,n,p,q),则=、 特别得,当n+m=2k时,得= ③在等差数列中,每隔k(k)项取出一项,按原来得顺序排列,所得得数列仍为等差数列,且公差为(k+1)d(例如:,,,仍为公差为3d得等差数列) ④若数列为等差数列,则记,,,则,,仍成等差数列,且公差为d ⑤若为等差数列得前n项与,则数列也为等差数列、 ⑥ 此性质对任何一种数列都适用 ⑦求最值得方法: I: 若>0,公差d<0,则当时,则有最大值,且最大; 若<0,公差d>0,则当时,则有最小值,且最小; II:求前项与得对称轴,再求出距离对称轴最近得正整数, 当 时,为最值,就是最大或最小,通过得开口来判断。 二、等比数列 (1)等比数列得基本公式 ①通项公式: (从第1项开始为等比) (从第m项开始为等差) ②前项与公式:, (2)证明等比数列得法方 ①定义法:对任意得n,都有(q0) 为等比数列 ②等比中项法:(0)为等比数列 ③通项公式法:为等比数列 (3)常用结论 ①若数列,为等比数列,则数列,,,, (k为非零常数) 均为等比数列、 ②若m+n=p+q (m, n, p, q),则=、 特别得,当n+m=2k时,得= ③在等比数列中,每隔k(k)项取出一项,按原来得顺序排列,所得得数列仍为等比数列,且公比为 (例如:,,,仍为公比得等比数列) ④若数列为等差数列,则记 ,,, 则,,仍成等比数列,且公差为 三、求任意数列通项公式得方法 (1)累加法:若满足an+1=an+f(n)利用累加法求: 例题:若,且,求: 练习题:若数列满足,且 (2)累乘法:若满足利用累乘法求: 例题:在数列{an}中,,求:、 练习题:在数列{an}中,且,求: (提示:) (3)递推公式中既有,又有,用逐差法 特别注意:该公式对一切数列都成立。 (4)若满足,则两边加:,在提公因式P,构造出一个等比数列,再出求: 例题:已知数列,满足:,且,求: 习题1:已知数列满足:且,求: 习题2:已知数列满足:,且,求: (5)若满足,则两边同时除以:,构造出一个等差数列, 再求出: 例题:已知满足:,求: 解:,既有: 所以:就是首项为:,公差得等差数列 所以: 习题1:已知且,求: 习题2:已知且,求: (六)待定系数法:若满足以下关系: 都可用待定系数法转变成一个等比数列来: 温馨提示:提,对待定系数 例题1:已知数列满足,求数列得通项公式、 解:,与原式对应得, 所以:就是首项,公比得等比数列 既有: 例题2:已知数列满足,求数列得通项公式、 解:, 与原式对应得: 所以:就是首项为:,公比得等比数列 既有: (七)颠倒法:若满足:,用颠倒法; 所以:,所以:就是以首项为:,公差得等差数列 例题1:已知,且,求: 例题2:已知,且,求: (八)倒数换元法:若数列满足:,则颠倒变成 然后再用两边加:或者待定系数法既可求出,再颠倒就可得到: 例题:若数列满足:,且,求: 解:,两边加:1得: , 所以:就是首项为:,公比:得等比数列; 既有: 若用待定系数法: 与原式子对应得,然后得方法同上; 习题:已知且,求: 四、求前n项与Sn得方法 (1)错位相减求与 主要适用于等差数列与等比数列乘积得数列得前n项与;或者就是等差与等比得商得前n项与;(就是商得时候,适当转变一下就变成了乘积形式)。既:设为等差数列,为等比数列,求:或得前n项与常用此方法(都转变为乘积形式) 例题1:已知数列,数列得前项与,求数列得前项与 例题2:求数列得得前项与 习题1:求: 习题2:设数列,求得前n项与 (2)裂项相消求与 适用于得形式,变形为: 例题:求数列得前n项与 习题1:求数列得前n项与 习题2:求数列得前n项与、 (3)、分组法求与:有些数列就是与可以分成几部分分开求,在进行加减; 例题:求得前与? 习题1:已知就是一个递增得等差数列且,前n项与为 数列得前n项与为,求数列得前n项与 (3)、倒序求与:若 ,则得前前n项与用倒序求与 【角标之与为,可以为一个常数,能用倒序求与得,一定就是可求得】 例题1:若数列,求得前前n项与 习题2:若数列,求得前前n项与
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服