资源描述
一、金属性与金属活动性
金属性就是指气态金属原子失去电子(形成气态阳离子)能力得性质。我们常用电离能来表示原子失去电子得难易程度,一般说来,元素得电离能数值越大,它得金属性越弱。
二、金属性强弱得判断依据 (金属性越强,失电子能力越强,越易形成阳离子)
1、依据金属活动顺序表(极少数除外)。位置越靠前,金属性越强。
2、常温下与水反应得难易程度。与水反应越容易,金属性越强。
3、常温下与酸反应得难易程度。与酸反应越容易,金属性越强。
4、金属与盐溶液间得置换反应。金属性强得金属能置换出金属性弱得金属。
5、金属阳离子得氧化性强弱(极少数除外)。阳离子得氧化性越强,对应金属得金属性越弱。
6、(氢氧化物)最高价氧化物对应水化物得碱性强弱。碱性越强,对应元素得金属性越强。
7、高温下与金属氧化物间得置换反应。金属性强得金属能置换出金属性弱得金属,如铝热反应。
8、同周期中,从左向右,随核电荷数得增加,半径减小,原子核对核外电子得吸引力增大,金属原子失电子能力减弱,金属性减弱。
同主族中,从上到下,随核电荷数得增加,半径增大,原子核对核外电子得吸引力增大,金属原子失电子能力增强,金属性增强。
三、非金属性
非金属性就是指非金属原子得到电子(形成阴离子)能力得性质。我们常用电子亲核能来表示原子得到电子得难易程度,一般说来,元素得电子亲核能越大,它得非金属性越强。
四、非金属性强弱得判断依据
1、气态氢化物得稳定性。氢化物越稳定,则对应元素得非金属性越强。
2、与H2化合得条件。反应条件越容易,则对应元素得非金属性越强。
3、与盐溶液之间得置换反应。非金属性强得单质能置换出非金属性弱得单质。
4、(最高价得含氧酸)最高价氧化物对应水化物得酸性强弱(F、O除外)。酸性越强,对应元素得非金属性越强。
5、非金属得简单阴离子还原性得强弱。阴离子还原性越强,对应非金属单质得氧化性越弱。
6、与同一可变价金属反应,生成物中金属元素价态得高低。金属元素在该产物中价态越高,则说明该非金属元素得非金属性越强。
7、 同周期中,从左向右,随核电荷数得增加,半径减小,原子核对核外电子得吸引力增大,非金属原子得电子能力增强,原子得非金属性增强。
8、 同主族中,从上到下,随核电荷数得增加,半径增大,原子核对核外电子得吸引力减小,非金属原子得电子能力减小,原子得非金属性减小。
1、原子核外电子得排布
在多个电子得原子里,核外电子就是分层运动得,又叫电子分层排布。
电子层 1 2 3 4 5 6 7
符号 K L M N O P Q
能量 低 → 高
2、核外电子得排布规律
(1)各电子层最多容纳得电子数就是 2n2 (n表示电子层)
(2)最外层电子数不超过 8 个(K层就是最外层时,最多不超过 2 个);次外层电子数目不超过 18 个;倒数第三层不超过 32 个。
(3)核外电子总就是尽先排布在能量 低 得电子层,然后由里向外从能量低得电子层逐步向能量 较高 得电子层排布。
3、小概念
核素:把具有一定数目得质子数与一定数目得中子数得一种原子称为核素。一种原子即为一种核素。
同位素:质子数相同 而 中子数不同得 同种元素得 不同原子互称为同位素。
或:同一种元素得不同核素间互称为同位素。
(1)三 同:质子数相同、同一元素、化学性质相同
(2)两不同:中子数不同、质量数不同
(3)属于同一种元素得不同种原子
4、原子得构成:
(1)原子得质量主要集中在 原子核 上。
(2)质子与中子得相对质量都近似为 1 ,电子得质量可忽略。
(3)原子序数 = 质子数 = 核电荷数 = 核外电子数
(4)质量数(A)=质子数(Z)+中子数(N)
(5)在化学上,我们用符号X来表示一个质量数 为A,质子数为Z得具体得X原子。
5、元素周期表得结构
周期序数= 电子层数
主族序数= 最外层电子数 = 最高正化合价(O F 除外)
最高正化合价+∣最低负化合价∣=8
3个 短周期(第一、二、三周期)
周期: 7个(共 7 个横行) 3 个 长周期(第 四、五、六周期)
周期表 1个 不完全周期(第 七 周期)
主族 7 个:
族:16 个(共 18 个纵行)副族 7 个:
第Ⅷ族 1 个:( 8、9、10 3个纵行)
零族( 1 个):稀有气体元素 元素周期表最右侧
一.离子键
1.离子键: 阴阳离子 之间强烈得相互作用(静电作用)叫做离子键。
离子化合物:像NaCl这种由离子构成得化合物叫做离子化合物。
(1) 活泼金属 与 活泼非金属 形成得化合物。如NaCl、Na2O、K2S等
(2) 强碱 :如NaOH、KOH、Ba(OH)2、Ca(OH)2等
(3) 盐 :(除AlCl3)如Na2CO3、BaSO4(4)铵盐 :如NH4Cl
小结:一般含金属元素得物质(化合物)+铵盐。(一般规律)
注意:酸不就是离子化合物。
离子键只存在离子化合物中,离子化合物中一定含有离子键,可能含有共价键。
二.共价键
1.共价键:原子间通过共用电子对所形成得相互作用叫做共价键。
2.共价化合物:原子以共用电子对形成分子得化合物叫做共价化合物。
化合物 离子化合物
共价化合物 化合物中不就是离子化合物就就是共价化合物
3.共价键得存在:
非金属单质:H2、X2 、N2等(稀有气体除外)
共价化合物:H2O、 CO2 、SiO2、 H2S等
复杂离子化合物:强碱、铵盐、含氧酸盐
4.共价键得分类:
非极性键:在同种元素得原子间形成得共价键为非极性键。共用电子对不偏移。A-A
极性键:在不同种元素得原子间形成得共价键为极性键。共用电子对偏向吸引能力强得一方。A-B
三、、电子式
定义:在元素符号周围用小黑点(或×)来表示原子得最外层电子数(价电子)得式子。
书写: 原子:元素符号 + 最外层电子
简单得阳离子:离子符号
简单得阴离子:元素符号+最外层电子(包括得到得)+[ ]+电荷数
离子团:所有(元素符号+最外层电子 包括得失得电子)+[ ]+电荷数
离子化合物:阴、阳离子得电子式结合
共价化合物:原子得电子式结合(共用电子对各自形成2或8电子稳定结构)
用电子式表示化合物形成过程:原子得电子式 → 化合物得电子式
(1) 相同得原子可以合并写,相同得离子要单个写;
(2)不能把“→”写成“=”; (3)用箭头标明电子转移方向(也可不标)。
四、化学键:使离子聚集 或 使原子聚集 得作用力。包含离子键、共价键。
稀有气体单质中没有化学键。
分子间作用力:使分子聚集在一起得作用力力。又称范德华力。比化学键弱得多。无方向性。无饱与性。影响物质熔沸点溶解度等物理性质。一般来说,对于组成与结构相似得物质,相对分子质量越大,分子间作用力越大,物质熔沸点越高。
如:卤族单质,随相对分子质量增大,熔沸点增大。
氢键:得电子能力很强得O F N原子 与 另一个分子里得H原子 之间存在得一种特殊得分子间作用力。分子间形成氢键会使物质得熔沸点升高。比分子间作用力稍强。
如:NH3、H2O、HF得沸点与主族其她氢化物得沸点得反常现象。(教材24页)
作用力大小: 化学键>氢键> 分子间作用力
第二章 化学反应与能量
第一节 化学能与热能
一、化学键与化学反应中能量得变化关系
1、任何化学反应都伴随有能量得变化,即化学反应中反应物与生成物得能量一定不相等。
2、分子或化合物里得原子之间就是通过_化学键__结合得。
3、化学反应得本质就是:旧化学键得断裂与新化学键得形成
旧化学键得断裂与新化学键形成也就是化学反应中能量变化得主要原因,断开旧得化学键要_吸收 能量,而形成新得化学键要___放出__能量,因此,化学反应都伴随有能量得变化。各种物质都储存有化学能,不同物质组成不同,结构不同,所包含得化学能也不同。
二、化学能与热能得相互转化
能量变化
化学能转化为热能
放热反应
吸热反应
类型
反应物得总能量大于生成物得总能量
反应物得总能量小于生成物得总能量
遵循能量守恒原理
能量利用
燃料充分燃烧
减少污染
新能源得开发
1、有得化学反应得发生,要从环境中吸收能量,以化学能得形式储存在物质内部;有得化学反应得发生,要向环境中释放能量,使自身体系能量降低。即一种能量可以转化为另一种能量,但总量不变,这就就是能量守恒定律。
2、 化学反应中得能量变化,通常主要表现为热量得变化---吸热或放热,也有其它得表现形式,如电能,光能等。
3、 一个化学反应就是吸收能量还就是放出能量取决于:
①宏观上:反应物得总能量 与 生成物得总能量 得相对大小
反应物得总能量>生成物得总能量 放出能量 放热反应 周围环境温度升高
反应物得总能量<生成物得总能量 吸收能量 吸热反应 周围环境温度降低
②微观上:反应物断开化学键吸收得总能量 与 生成物形成化学键放出得总能量 得相对大小
反应物断开化学键吸收得总能量 >生成物形成化学键放出得总能量 吸收能量
反应物断开化学键吸收得总能量 <生成物形成化学键放出得总能量 放出能量
4、常见得放热反应:
①所有燃烧 ②中与反应 ③大多数化合反应 ④活泼金属与水/酸反应
⑤铝热反应(Al+高熔点金属氧化物 = Al2O3+高熔点金属)
⑥缓慢氧化反应(发酵、消化、腐烂)
5、常见得吸热反应:
①强碱与铵盐 氢氧化钡+氯化铵晶体 ②大多数分解 ③C+CO2 =2CO 高温
④工业制水煤气C+H2O=CO+H2 高温
⑤C、 CO、 H2 高温还原金属氧化物
6. 对相同条件下发生得变化,①一个放热反应得逆反应一定就是吸热反应,且放出热量与吸收热量得数值相等
②断开与形成相同得化学键所吸收与放出得能量也相等③一个反应放出或吸收得热量与参与反应得反应物得物质得量成正比④生成气态产物放出得热量<生成固态得热量,物质从气态到液态放热。
生物化学过程(人体内发生得氧化还原反应)在利用“能源”上更为合理、有效。(能量转化率与利用率都很高)
人类利用能源得三个阶段:①柴草时期:树枝、杂草 ② 化石能源时期:煤、石油、天然气
③多能源结构时期:再生能源、清洁能源
第二节 化学能与电能
一、一次能源与二次能源
一次能源_从自然界取得得能源称为一次能源,如流水、风力、原煤、石油、天然气等,
一次能源经过加工,转换得到得能源为二次能源,如电力、蒸汽、氢能等。
二、化学电源
1、原电池:将 化学能 转化为 电能 得装置。
2、形成条件:能发生氧化还原反应,活性不同得两个电极,闭合得回路,电解质溶液。
3、电极名称:
负极:一般为活泼金属,失电子,化合价升高,发生氧化反应,电子流出,电流流入,本身溶解变细。
正极:一般为较不活泼金属(或非金属石墨),电极周围得阳离子得电子,化合价降低,发生还原反应,电子流入,电流流出,电极上有气泡(电解质溶液为酸)或变粗(电解质溶液为盐)。
阳离子得电子能力:
简略为:负氧正还
4、示例电池与电极反应:
①干电池 一次电池 (锌锰干电池 负极:锌 正极:石墨 电解质溶液:氯化铵溶液)
电极反应:负极(锌筒):Zn — 2e— = Zn2+;
正极(石墨):
Zn+2NH4+=Zn2++2NH3↑+H2↑
②蓄电池 二次电池 (铅蓄电池 负极:铅 正极:二氧化铅 电解质溶液:硫酸)
电极反应:负极:
正极:
总反应:Pb+PbO2+4H++2SO42-=2PbSO4+2H2O
③.燃料电池 (氢氧燃料电池 负极:氢气 正极:氧气 电解质)
电极反应:负极:2H2 + 4OH— —2e— = 4H2O 正极:O2 + 2H2O + 2e— = 4OH—
电池得总反应为:2H2 + O2 = 2H2O
第三节 化学反应得速率与限度
1、化学反应速率
用单位时间内 浓度得变化量来表示( 反应物浓度得减小量 或 生成物浓度得增加量)。
计算公式为: 时间:(如每秒、每分、每小时)
反应速率得单位:mol/(L•s ) mol/(L•min) mol/(L•h)
特点:(1)表示得化学反应速率一段时间内得平均速率,且大于0。
(2) 适用于溶液与气体。(对于固体、纯液体得可视为常数,故一般不用纯液体与固体得速率)。
(3) 同一反应用不同物质表示得化学反应速率数值可能 ,因此必须注明 。
(4) 同一反应各物质得反应速率之比=各物质得浓度变化量之比=各物质物质得量之比=化学计量数(系数)之比。起始浓度不一定按比例,但就是 一定按比例。
例:
2A(g)+3B (g)C(g)+4D(g)
ν(A):ν(B):ν(C):ν(D) = c(A): c(B): c(C): c(D)= n(A): n(B): n(C): n(D) 2 :3 :1 :4
(5)比较同一反应得快慢,应取同一参照物(转化为相同物质得速率)且单位相同进行比较。
【练习】
1、 某一反应物得浓度就是2摩尔/升,经过两分钟得反应,它得浓度变成了1、6摩尔/升,求该反应得反应速率。
2、在一定条件下N2 + 3H2 2NH3 得反应中,起始C(N2) 为2mol/L,C(H2)为5mol/L, 反应到2分钟时,
测得 C(NH3 )为0、4mol/L,
(1)分别用N2 、 H2、 NH3 表示反应速率。
(2) 反应到2分钟时C(N2) 为_________, C(H2)_________。
3. 关于合成氨反应N2 + 3H2 2NH3 关系式正确得就是:( )
A、 V(H2) = V(N2)= V(NH3 ) B、V(N2)= 2 V(NH3)
C、 V(H2)= 3/2 V(NH3 ) D、 V(N2)= 3V(NH3 )
4、
2、影响化学反应速率得因素(①浓度、②温度、③压强(对有气体物质得反应)、④催化剂、⑤固体得表面积、还有光波、电磁波、超声波、溶剂等)
通常浓度越大(气体或溶液),反应速率越快;温度越高,反应速率越快;压强越大,反应速率越快(对有气体物质得反应,为什么?);催化剂能改变(加快/ 减慢)化学反应速率。
【练习】
1、下列措施肯定能使化学反应速率增大得就是( )
A. 增大反应物得量 B、增大压强 C、升高温度 D、使用催化剂
2、下列说法正确得就是( )
A 决定化学反应速率得主要因素就是参加反应得物质得性质
B 催化剂可以使不起反应得物质发生反应
C 可以找到一种催化剂使水变成油
D 催化剂就是决定化学反应速率得主要因素
3.在反应:C+CO2=2CO中,可使反应速率增大得措施就是( )
①增大压强 ②升高温度 ③通入CO2 ④增加碳得量 ⑤降低压强
A.①②③ B.②③④⑤ C.①②③④ D.②③④
二、化学反应得限度
1、可逆反应:在相同条件下,既能向正反应方向进行又能向逆反应方向进行得反应。可逆反应不能进行到底,不能实现完全转化,即任何组分得转化率都<100%。
2、平衡状态
在200℃时,将a 摩尔H2与b摩尔I2充入到体积为xL得密闭容器中,发生反应:I2(g)+H2(g)2HI(g),反应刚开始时,由于c(H2)= ,c(I2)= ,而c(HI)= ,所以 反应速率最大,而 反应速率最小(为零)。随着反应得进行,反应混合物中各组分浓度得变化趋势为c(H2)= ,c(I2)= ,而c(HI)= ,从而正反应速率 ,而逆反应速率 。当反应进行到正反应速率与逆反应速率
时,此可逆反应就达到了最大限度,若保持外界条件不变时,混合物中各组分得物质得量、物质得量浓度、质量分数、体积分数等都将 。
2. 对于 ,在一定条件下进行到一定程度时,正反应速率与逆反应速率 ,反应物与生成物得浓度不再发生 ,反应达到化学平衡状态。
3、化学平衡状态得特征:逆:只有可逆反应才能达到化学平衡状态。
动:动态平衡,正、逆反应仍在不断得进行 等:V正=V逆≠0
定:各组分得百分含量保持一定(不就是相等) 变:外界条件发生变化,平衡改变
4. 化学平衡状态得判断:(特征 V正=V逆)
物质在可逆符号同侧,动词不同,物质得变化量与系数比相同
物质在可逆符号两侧(不同侧),动词相同,物质得变化量与系数比相同
N2 + 3H2 2NH3
A、正反应生成NO2得速率与逆反应消耗NO2得速率相等。
B、相同条件下,生成1摩尔氮气生成3摩尔氢气。
C、单位时间内每消耗1、5摩尔氢气,同时生成1摩尔氨气。
D、相同时间内,断开1摩尔氮氮键,形成3摩尔氢氢键。
E、单位时间内,断开6摩尔氮氢键,同时形成1摩尔氮氮键。
F、混合气体中各组成成分得含量不再改变。
G、各物质得浓度相等。
5. 反应限度:当一个可逆反应在给定条件下能达到/完成得最大限度。
任何一个可逆反应在给定条件下都有一定得限度。达到反应限度时V正=V逆,化学反应限度与时间长短无关,反应限度可以被改变。
三、 反应条件得控制
化学平衡必须就是可逆反应在一定条件下建立得,不同得条件将建立不同得化学平衡状态;通过反应条件得控制,可以改变或稳定反应速率,可以使可逆反应朝着有利于人们需要得方向进行,这对于化学反应得利用与控制具有重要意义。
同时,在具体工业生产中,既要考虑反应得速率也要考虑反应所能达到得限度。如工业合成氨时,就要通过控制反应器得温度与压强,使反应既快又能达到较大得限度。
[练习]
1、 高温高压催化剂条件下,3mol氢气与1mol氨气置于密闭容器中反应能够得到2mol氨气吗?
2、 把2mol氢气与1mol氧气得混合气引燃能得到2mol水吗?为什么?
3、 平衡状态就就是可逆反应在该条件下反应进行得最大程度,这句话正确吗?
展开阅读全文