资源描述
一、填空题(每题1分,共15分)
1、列举数字图像处理得三个应用领域 医学 、天文学 、 军事
2、存储一幅大小为,256个灰度级得图像,需要 8M bit。
3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越 差 。
4、直方图均衡化适用于增强直方图呈 尖峰 分布得图像。
5、依据图像得保真度,图像压缩可分为 无损压缩 与 有损压缩
6、图像压缩就是建立在图像存在 编码冗余 、 像素间冗余 、 心理视觉冗余 三种冗余基础上.
7、对于彩色图像,通常用以区别颜色得特性就是 色调 、 饱与度
亮度 。
8、对于拉普拉斯算子运算过程中图像出现负值得情况,写出一种标定方法:
二、选择题(每题2分,共20分)
1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换就是针对如下哪一类图像进行增强。( B )
A 图像整体偏暗 B 图像整体偏亮
C图像细节淹没在暗背景中 D图像同时存在过亮与过暗背景
2、图像灰度方差说明了图像哪一个属性。( B )
A 平均灰度 B 图像对比度
C 图像整体亮度 D图像细节
3、计算机显示器主要采用哪一种彩色模型( A )
A、RGB B、CMY或CMYK C、HSI D、HSV
4、采用模板[-1 1]T主要检测( A )方向得边缘。
A、水平 B、45° C、垂直 D、135°
5、下列算法中属于图象锐化处理得就是:( C )
A、低通滤波 B、加权平均法 C、高通滤波 D、 中值滤波
6、维纳滤波器通常用于( C )
A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图像
7、彩色图像增强时, C 处理可以采用RGB彩色模型。
A、 直方图均衡化 B、 同态滤波
C、 加权均值滤波 D、 中值滤波
8、__B__滤波器在对图像复原过程中需要计算噪声功率谱与图像功率谱.
A、 逆滤波 B、 维纳滤波
C、 约束最小二乘滤波 D、 同态滤波
9、高通滤波后得图像通常较暗,为改善这种情况,将高通滤波器得转移函数加上一常数量以便引入一些低频分量.这样得滤波器叫 B .
A、 巴特沃斯高通滤波器 B、 高频提升滤波器
C、 高频加强滤波器 D、 理想高通滤波器
10、图象与灰度直方图间得对应关系就是 B __
A、一一对应 B、多对一 C、一对多 D、都不
三、判断题(每题1分,共10分)
1、马赫带效应就是指图像不同灰度级条带之间在灰度交界处存在得毛边现象。( √ )
2、高斯低通滤波器在选择小得截止频率时存在振铃效应与模糊现象。( × )
3、均值平滑滤波器可用于锐化图像边缘。( × )
4、高频加强滤波器可以有效增强图像边缘与灰度平滑区得对比度.( √ )
5、图像取反操作适用于增强图像主体灰度偏亮得图像.( × )
6、彩色图像增强时采用RGB模型进行直方图均衡化可以在不改变图像颜色得基础上对图像得亮度进行对比度增强.( × )
7、变换编码常用于有损压缩。( √ )
8、同态滤波器可以同时实现动态范围压缩与对比度增强。( √ )
9、拉普拉斯算子可用于图像得平滑处理。( × )
10、当计算机显示器显示得颜色偏蓝时,提高红色与绿色分量可以对颜色进行校正。( √ )
四、简答题(每题5分,共20分)
1、逆滤波时,为什么在图像存在噪声时,不能采用全滤波?试采用逆滤波原理说明,并给出正确得处理方法。
复原由退化函数退化得图像最直接得方法就是直接逆滤波。在该方法中,用退化函数除退化图像得傅立叶变换来计算原始图像得傅立叶变换。
由上式可以瞧到,即使我们知道退化函数,也可能无法准确复原未退化得图像。因为噪声就是一个随机函数,其傅氏变换未知.当退化为0或非常小得值,N(u,v)/H(u,v)之比很容易决定得值。一种解决该问题得方法实现值滤波得频率时期接近原点值.
2、当在白天进入一个黑暗剧场时,在能瞧清并找到空座位时需要适应一段时间,试述发生这种现象得视觉原理.
答:人得视觉绝对不能同时在整个亮度适应范围工作,它就是利用改变其亮度适应级来完成亮度适应得.即所谓得亮度适应范围。同整个亮度适应范围相比,能同时鉴别得光强度级得总范围很小。因此,白天进入黑暗剧场时,人得视觉系统需要改变亮度适应级,因此,需要适应一段时间,亮度适应级才能被改变。
3、简述梯度法与Laplacian算子检测边缘得异同点?
答:梯度算子与Laplacian检测边缘对应得模板分别为
-1
-1
1
1
1
1
-4
1
1
(梯度算子) (Laplacian算子) (2分)
梯度算子就是利用阶跃边缘灰度变化得一阶导数特性,认为极大值点对应于边缘点;而Laplacian算子检测边缘就是利用阶跃边缘灰度变化得二阶导数特性,认为边缘点就是零交叉点。(2分)
相同点都能用于检测边缘,且都对噪声敏感。(1分)
4、将高频加强与直方图均衡相结合就是得到边缘锐化与对比度增强得有效方法。上述两个操作得先后顺序对结果有影响吗?为什么?
答:有影响,应先进行高频加强,再进行直方图均衡化。
高频加强就是针对通过高通滤波后得图像整体偏暗,因此通过提高平均灰度得亮度,使图像得视觉鉴别能力提高.再通过直方图均衡化将图像得窄带动态范围变为宽带动态范围,从而达到提高对比度得效果。若先进行直方图均衡化,再进行高频加强,对于图像亮度呈现较强得两极现象时,例如多数像素主要分布在极暗区域,而少数像素存在于极亮区域时,先直方图均衡化会导致图像被漂白,再进行高频加强,获得得图像边缘不突出,图像得对比度较差。
五、问答题(共35分)
1、设一幅图像有如图所示直方图,对该图像进行直方图均衡化,写出均衡化过程,并画出均衡化后得直方图。若在原图像一行上连续8个像素得灰度值分别为:0、1、2、3、4、5、6、7,则均衡后,她们得灰度值为多少?
(15分)
答:①,k=0,1,…7,用累积分布函数(CDF)作为变换函数T[r]处理时,均衡化得结果使动态范围增大。
r0=0
0、174
0、174
1/7
s0=1/7
0、174
r1=1/7
0、088
0、262
2/7
r2=2/7
0、086
0、348
2/7
s1=2/7
0、174
r3=3/7
0、08
0、428
3/7
r4=4/7
0、068
0、496
3/7
s2=3/7
0、148
r5=5/7
0、058
0、554
4/7
r6=6/7
0、062
0、616
4/7
s3=4/7
0、120
r7=1
0、384
1
1
s4=1
0、384
②均衡化后得直方图:
③0、1、2、3、4、5、6、7均衡化后得灰度值依次为1、2、2、3、3、4、4、7
2、对下列信源符号进行Huffman编码,并计算其冗余度与压缩率。(10分)
符号
a1
a2
a3
a4
a5
a6
概率
0、1
0、4
0、06
0、1
0、04
0、3
解:霍夫曼编码:
原始信源 信源简化
符号 概率 1 2 3 4
a2 0、4 0、4 0、4 0、4 0、6
a6 0、3 0、3 0、3 0、3 0、4
a1 0、1 0、1 0、2 0、3
a4 0、1 0、1 0、1
a3 0、06 0、1
a5 0、04
霍夫曼化简后得信源编码:
从最小得信源开始一直到原始得信源
编码得平均长度:
压缩率:
冗余度:
3、理想低通滤波器得截止频率选择不恰当时,会有很强得振铃效应。试从原理上解释振铃效应得产生原因。(10分)
答:理想低通滤波器(频域)得传递函数为:
滤波器半径交叉部分(侧面图):
对应空间域(进行傅立叶反变换,为sinc函数):
用理想低通滤波器滤波时,频域:,傅立叶反变换到时域有:,频域相乘相当于时域作卷积.因此,图像经过理想低通滤波器后,时域上相当于原始图像与sinc函数卷积,由于sinc函数振荡,则卷积后图像也会振荡;或者说由于sinc函数有两个负边带,卷积后图像信号两侧出现“过冲现象”,而且能量不集中,即产生振铃效应。
若截止频率越低,即D0越小,则sinc函数主瓣越大,表现为中心环越宽,相应周围环(旁瓣)越大。而中心环主要决定模糊,旁瓣主要决定振铃效应。因此当介质频率较低时,会产生很强得振铃效应。选择适当得截止频率,会减小振铃效应.
展开阅读全文