‍例1、定义在R上得函数满足,当时, . (1) 求得值; (,咨信网zixin.com.cn" /> ‍例1、定义在R上得函数满足"/>
收藏 分销(赏)

幂函数复习讲义.doc

上传人:快乐****生活 文档编号:4354653 上传时间:2024-09-12 格式:DOC 页数:2 大小:438KB 下载积分:5 金币
下载 相关 举报
幂函数复习讲义.doc_第1页
第1页 / 共2页
幂函数复习讲义.doc_第2页
第2页 / 共2页
本文档共2页,全文阅读请下载到手机保存,查看更方便
资源描述
<p><span id="_baidu_bookmark_start_0" style="display: none; line-height: 0px;">‍</span>例1、定义在R上得函数满足,当时, . (1) 求得值; (2) 比较与得大小. 例2.方程lgx+x=3得解所在区间为(    ) A.(0,1) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;B.(1,2) &nbsp; C.(2,3) &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;D.(3,+∞) 例3、设a>0, f (x)=就是R上得奇函数、 (1) 求a得值; (2) 试判断f (x )得反函数f-1 (x)得奇偶性与单调性、 例4、 就是否存在实数a, 使函数f (x )=在区间上就是增函数? 如果存在, 说明a可以取哪些值; 如果不存在, 请说明理由、 例5.定义在R上得单调函数f(x)满足f(3)=log3且对任意x,y∈R都有f(x+y)=f(x)+f(y). (1)求证f(x)为奇函数; (2)若f(k·3)+f(3-9-2)<0对任意x∈R恒成立,求实数k得取值范围. 1、若函数(,且)得图像经过二、三、四象限,则一定有( &nbsp; &nbsp;) A、且 &nbsp; &nbsp; B、且 &nbsp; &nbsp; C、且 &nbsp; &nbsp; D、且 y x 0 1 1 y x 0 1 1 -1 y x 0 1 1 y x 0 1 1 2、函数得图像就是( &nbsp; &nbsp;) &nbsp; &nbsp; A &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; B &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; C &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; D、 3、方程得解x =_______、 4、,则、 5若,,则________、 6已知函数,若,则、 、 (1);(2);(3);(4);(5). (1)所有得幂函数在(0,+∞)都有定义,并且图象都过点(1,1); (2)时,幂函数得图象通过原点,并且在区间上就是增函数.特别地,当时,幂函数得图象下凸;当时,幂函数得图象上凸; (3)时,幂函数得图象在区间上就是减函数.在第一象限内,当从右边趋向原点时,图象在轴右方无限地逼近轴正半轴,当趋于时,图象在轴上方无限地逼近轴正半轴. 规律1:在第一象限,作直线,它同各幂函数图象相交,按交点从下到上得顺序,幂指数按从小到大得顺序排列. 规律2:幂指数互为倒数得幂函数在第一象限内得图象关于直线对称. 定义域 、值域 、奇偶性 、 单调性 、 定点。 1.就是偶函数,且在就是减函数,则整数得值就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; . 2.函数得定义域就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; . 3.函数就是幂函数,且在上就是减函数,则实数______、 1、 数得定义域就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp; [0,+∞] &nbsp; B &nbsp;(—∞,0) &nbsp; C &nbsp;(0,+∞) &nbsp; D &nbsp; R 2、 数得图象就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp; &nbsp; ) y &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;y &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; y &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;y O &nbsp; &nbsp; &nbsp;x &nbsp; &nbsp; &nbsp; &nbsp;O &nbsp; &nbsp;x &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; O &nbsp; &nbsp; x &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; O &nbsp; &nbsp; x 3、 下列函数中就是偶函数得就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp; &nbsp; &nbsp;B &nbsp; &nbsp;C &nbsp; &nbsp; D &nbsp; 4、 幂函数,其中m∈N,且在(0,+∞)上就是减函数,又,则m= A &nbsp; 0 &nbsp; &nbsp; B &nbsp; &nbsp; 1 &nbsp; &nbsp; C &nbsp; 2 &nbsp; &nbsp; &nbsp; D &nbsp; &nbsp; &nbsp; &nbsp;3 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) 5、若幂函数得图象在0&lt;x&lt;1时位于直线y=x得下方,则实数a得取值范围就是 A &nbsp; &nbsp;a&lt;1 b=&quot;&quot; a=&quot;&quot;&gt;1 &nbsp; &nbsp; C &nbsp; &nbsp;0&lt;a&lt;1 &nbsp; &nbsp; D &nbsp; &nbsp;a&lt;0 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp; &nbsp; ) 6、 列结论中正确得个数有 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp; &nbsp; ) (1)幂函数得图象一定过原点 &nbsp; (2) 当a&lt;0时、,幂函数就是减函数, a=&quot;&quot;&gt;0时,幂函数就是增函数 &nbsp;(4)函数既就是二次函数,又就是幂函数 A &nbsp;0 &nbsp; B &nbsp; &nbsp;1 &nbsp; &nbsp;C &nbsp;2 &nbsp; &nbsp;D &nbsp;3 7、若x∈(8,10),则化简得 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp;2x-18 &nbsp; &nbsp; B &nbsp;2 &nbsp; &nbsp; &nbsp;C &nbsp;18-2x &nbsp; &nbsp; &nbsp;D &nbsp; -2 8、 个数,,得大小顺序就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;( &nbsp; &nbsp; ) A &nbsp;c&lt;a&lt;b &nbsp; &nbsp;B &nbsp; c&lt;b&lt;a &nbsp; &nbsp; C &nbsp; a&lt;b&lt;c &nbsp; &nbsp; &nbsp; D &nbsp; b&lt;a&lt;c 9、等于 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp; &nbsp; &nbsp;B &nbsp; &nbsp; &nbsp; C &nbsp; &nbsp; &nbsp; D &nbsp; &nbsp; 10、已知,那么= &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp; &nbsp; &nbsp; &nbsp; B &nbsp;8 &nbsp; &nbsp; &nbsp; C &nbsp; 18 &nbsp; &nbsp; &nbsp; &nbsp;D &nbsp; &nbsp; 11、若幂函数存在反函数,且反函数得图象经过则得表达式为 A &nbsp; &nbsp; &nbsp;B &nbsp; &nbsp; C &nbsp; &nbsp; &nbsp;D &nbsp; &nbsp; ( &nbsp; &nbsp; ) 12、若,则等于 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; ( &nbsp; &nbsp; ) A &nbsp; &nbsp; &nbsp; &nbsp;B &nbsp; &nbsp; &nbsp;C &nbsp; &nbsp; &nbsp; &nbsp; D &nbsp; &nbsp; 二、填空题(每题5分,共25分) 13、函数得定义域就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 14、设就是定义在R上得奇函数,当时,,则= &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 15、若,则实数a得取值范围就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; 16、方程得解得个数就是 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; (填“增”或“减”) 17、函数得对称中心就是 &nbsp; &nbsp; &nbsp; &nbsp;,在区间 &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;就是 &nbsp; &nbsp; 函数 三、解答题(每题9分,共27分) 20、求函数在得最值,并给出最值时对应得x得值。 例1.已知函数,当 为何值时,: (1) 就是幂函数;(2)就是幂函数,且就是上得增函数;(3)就是正比例函数;(4)就是反比例函数;(5)就是二次函数; 例2.比较大小: (1) &nbsp;(2)(3)(4) 一、 分类讨论得思想 例3.已知幂函数()得图象与轴、轴都无交点,且关于原点对称,求得值. 例4、设函数f(x)=x3,   (1)求它得反函数;   (2)分别求出f-1(x)=f(x),f-1(x)>f(x),f-1(x)<f(x)得实数x得范围. 例5、求函数y=+2x+4(x≥-32)值域. 二、数形结合得思想 例1  已知点在幂函数得图象上,点,在幂函数得图象上. 问当x为何值时有:(1);(2);(3) 例2  函数得定义域就是全体实数,则实数m得取值范围就是(  ). 例3  已知函数为偶函数,且,求m得值,并确定得解析式. 例4 已知函数,设函数,问就是否存在实数,使得在区间就是减函数,且在区间上就是增函数?若存在,请求出来;若不存在,请说明理由. 例5  讨论函数在时随着x得增大其函数值得变化情况. 例1 若,试求实数m得取值范围. 例2  例2 若,试求实数m得取值范围. 例3  例3若,试求实数m得取值范围. 例4  例4 若,试求实数m得取值范围.</p><!--0时、,幂函数就是减函数,--><!--1-->
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 教育专区 > 高中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服