1、华东师大版七年级数学(上)期末复习提纲-知识点总结第二章 有理数1负数:像-5,-2,-237,-3.6这样的数,这是一种新数,叫做负数;正数:过去学过的那些数(零除外),如10,3,500,5.5等,叫做正数注意:0既不是正数,也不是负数2正整数、零和负整数统称整数,正分数和负分数统称分数整数和分数统称有理数3数轴:规定了原点、正方向和单位长度的直线叫做数轴4在数轴上表示的两个数,右边的数总比左边的数大;正数都大于零,负数都小于零,正数大于负数5相反数:只有正负号不同的两个数称互为相反数;在数轴上表示互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等;规定:0的相反数是0;我们通常把
2、在一个数前面添上“-”号,表示这个数的相反数;在一个数前面添上“+”号,表示这个数本身w W w .X k b 1. c O m6绝对值:数轴上表示数a的点与原点的距离叫做数a的绝对值.记作|a|;一个正数的绝对值是它本身;0的绝对值是0;一个负数的绝对值是它的相反数;任意有理数a,总有|a|07两个负数,绝对值大的反而小8有理数的加法法则:1)同号两数相加,取相同的正负号,并把绝对值相加;2)绝对值不等的异号两数相加,取绝对值较大加数的正负号,并用较大的绝对值减去较小的绝对值;3)互为相反数的两个数相加得0;4)一个数同0相加,仍得这个数.注意:一个有理数由正负号和绝对值两部分组成,所以进行
3、加法运算时,应注意确定和的正负号与绝对值9加法交换律:两个数相加,交换加数的位置,和不变,如:a+b=b+a加法结合律:三个数相加,先把前两个数相加,或者先把后两个数相加,和不变.如:( a + b )+ c = a + ( b + c )10有理数减法法则:减去一个数,等于加上这个数的相反数11有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘.任何数乘0得012乘法交换律: 两个数相乘,交换因数的位置,积不变如:abba.乘法结合律: 三个数相乘,先把前两个数相乘,或者先把后两个数相乘,积不变.如:(ab)ca(bc).分配律:一个数乘以两个数的和,等于这个数分别乘以这两个数,再
4、把积相加.a(bc)abac几个非0因数相乘,积的符号由负因数的个数决定,当负因数奇数个时,积为负;当负因数偶数个时,积为正几个数相乘,有0因数时,积就为013倒数:乘积是1的两个数互为倒数;除以一个数等于乘以这个数的倒数(除法转化乘法)注意:0不能作除数. 有理数的除法法则:两数相除,同号得正,异号得负,再把绝对值相除0除以任何一个非0数,都得012 / 1214求几个相同因数的积的运算,叫做乘方,乘方的结果叫做幂.在an中,a叫作底数,n叫做指数,an读作a的n次方,an看作是a的n次方的结果时,也可读作a的n次幂.正数的任何次幂都是正数; 负数的奇次幂是负数,负数的偶次幂是正数15科学记
5、数法:把一个大于10的数记成a10n的形式,其中a是整数数位只有一位的数(即1a10),这种记数法叫做科学记数法16有理数混合运算的运算顺序:1)先乘方,再乘除,最后加减;2)同级运算,从左至右的依次计算;3)如果有括号,就先小括号,再中括号,最后大括号17一个近似数,四舍五入到了哪一位,就说这个近似数精确到了哪一位这时,从左边第一个非0数起,到精确数位止,所有的数字都叫做这个近似数的有效数字18小结一、知识结构 二、概括1数轴是理解有理数概念与运算的重要工具,学习本章要善于结合数轴理解有理数的有关概念(如相反、绝对值),会利用数轴比较两个有理数的大小.2在有理数的运算中,要特别注意符号问题,
6、提高运算的正确性,还要善于灵活运用运算律简化运算.3在实际运算中经常会遇到近似数,要注意按要求的精确度进行计算和保留结果.对较大的数用科学记数法表示既方便,又容易体现对有效数字的要求第三章 整式的加减1代数式:数和字母用运算符号连结所成的式子,称为代数式注意:1)代数式中出现的乘号,通常写作“ ”或省略不写,如6b常写作6b或6b; 2)数字与字母相乘时,数字写在字母前面,如6b一般不写作b6; 3)除法运算写成分数形式; 4)数与字母相乘,带分数要化假分数2列代数式:把问题中与数量有关的词语用代数式表示出来,即列出代数式3代数式的值:用数值代替代数式里的字母,按照代数式中的运算计算得出的结果
7、,叫做代数式的值4单项式:由数与字母的乘积组成的代数式叫做单项式;单独一个数或一个字母也是单项式单项式中的数字因数叫做这个单项式的系数一个单项式中,所有字母的指数的和叫做这个单项式的次数注意:1)当一个单项式的系数是1或1时,“1”通常省略不写;2)单项式的系数是带分数时,通常写成假分数5多项式:几个单项式的和叫做多项式在多项式中,项:每个单项式叫做多项式的项其中,不含字母的项,叫做常数项一个多项式含有几项,就叫几项式多项式里,次数最高项的次数,就是这个多项式的次数注意:1)多项式的次数不是所有项的次数之和;2)多项式的每一项都包括它前面的正负号6单项式与多项式统称整式7降幂排列:按某一字母的
8、指数从大到小的顺序排列,叫做多项式按该字母的降幂排列升幂排列:按某一字母的指数从小到大的顺序排列,叫做多项式按该字母的升幂排列注意:1)重新排列多项式时,每一项一定要连同它的符号一起移动;2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列8同类项:所含字母相同,并且相同字母的指数也相等的项叫做同类项所有的常数项都是同类项9合并同类项的法则:把同类项的系数相加,所得的结果作为系数,字母和字母的指数保持不变10去括号法则:括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都不改变正负号;括号前面是“”号,把括号和它前面的“”号去掉,括号里各项都改变正负号11添括号法则
9、:所添括号前面是“”号,括到括号里的各项都不改变正负号;所添括号前面是“”号,括到括号里的各项都改变正负号12整式加减的一般步骤是:先去括号,再合并同类项一、 知识结构 二、 概括1整式中,只含一项的是单项式,否则是多项式分母中含有字母的代数式不是整式,当然也不是单项式或多项式2单项式的次数是所有字母的指数之和;多项式的次数是多项式中最高次项的次数3单项式的系数包括它前面的符号,多项式中每一项的系数也包括它前面的符号4去(添)括号时,要特别注意括号前面是“”号的情形:去括号时,括号里各项都改变符号;添括号时,括到括号里的各项都改变符号第四章 图形的初步认识11)柱体:圆柱,棱柱(三棱柱,四棱柱
10、,);2)锥体:圆锥,棱锥(三棱锥,四棱锥,);3)球体多面体:围成立体图形的面是平的面,像这样的立体图形,又称为多面体2视图:从三个不同的方向看一个物体,一般是从正面、上面和侧面,然后描绘三张所看到的图,即视图从正面看到的图形,称为正视图;从上面看到的图形,称为俯视图;从侧面看到的图形,称为侧视图(左视图,右视图)3表面展开图:多面体是由平面图形围成的立体图形,沿着多面体的棱将它剪开,可以把多面体的表面变成一个平面图形4圆是由曲线围成的封闭图形. 多边形是由线段围成的封闭图形一个n边形至少可以分割成n-2个三角形5射线:线段向一方无限延伸所形成的图形叫做射线;直线:把线段向两方无限延伸所形成
11、的图形就是直线表示方法:点:用一个大写字母表示; 线段:用两个端点的大写字母表示;或用一个小写字母表示; 射线:用端点和射线上任意一点的两个大写字母表示;或用一个小写字母表示; 直线:用直线上任意两点的大写字母表示;或用一个小写字母表示公理1:两点之间,线段最短此时线段的长度,就是这两点间的距离公理2:经过两点有一条直线,并且只有一条直线6线段的中点:把一条线段分成两条相等线段的点,叫做这条线段的中点7角:由两条有公共端点的射线组成的图形也可以看成是由一条射线绕着它的端点旋转而成的图形.角的顶点:射线的端点;角的始边:起始位置的射线;角的终边:终止位置的射线表示方法:(1)用两边和顶点的三个大
12、写字母表示(顶点字母在中间);(2)用顶点的大写字母表示;(3)用阿拉伯数字表示;(4)用小写的希腊字母表示 8平角:绕着端点旋转到角的终边和始边成一直线所成的角;周角:绕着端点旋转到终边和始边重合所成的角91周角=360;1平角=180;1=60;1=6010角的平分线:从一个角的顶点引出的一条射线,把这个角分成两个相等的角,这条射线叫做这个角的平分线11互余:两个角的和等于90,就说这两个角互为余角,简称互余互补:两个角的和等于一平角(180),就说这两个角互为补角,简称互补同角(等角)的余角相等;同角(等角)的补角相等两直线相交形成了1、2、3和4(如图1),我们把其中的1和3叫做对顶角
13、,2和4也是对顶角对顶角相等12互相垂直:直线AB与直线CD相交,交点为O,当所构成的四个角中有一个为直角时,其他三个角也都成为直角,此时,直线AB、CD互相垂直,记作“ABCD”,他们的交点O叫做垂足在同一平面内,经过直线外或直线上一点,有且只有一条直线与已知直线垂直若线段AB垂直于直线BC,垂足为B线段AB叫做点A到直线BC的垂线段,它的长度就是点A到直线BC的距离直线外一点与直线上各点连结而得到的所有线段中,垂线段最短13同位角,内错角,同旁内角(见教材P166-167)14平行线:在同一平面内不相交的两条直线叫做平行线在同一平面内,两条不重合的直线的位置关系只有两种:相交或平行经过已知
14、直线外一点,有且只有一条直线与已知直线平行如果两条直线都和第三条直线平行,那么这两条直线也互相平行15平行线的判定方法:(1)同位角相等,两直线平行;(2)内错角相等,两直线平行;(3)同旁内角互补,两直线平行垂直于同一条直线的两条直线互相平行16平行线的性质:(1)两直线平行,同位角相等;(2)两直线平行,内错角相等;(3)两直线平行,同旁内角互补知识框图 1. 两直线相交所成的四个角中,有一条公共边,它们的另一边互为反向延长线,具有这种关系的两个角,互为_.2. 两直线相交所成的四个角中,有一个公共顶点,并且一个角的两边分别是另一个角两边的反向延长线,具有这种关系的两个角,互为_.对顶角的
15、性质:_ _.3. 两直线相交所成的四个角中,如果有一个角是直角,那么就称这两条直线相互_.垂线的性质:过一点_一条直线与已知直线垂直.连接直线外一点与直线上各点的所在线段中,_.4. 直线外一点到这条直线的垂线段的长度,叫做_.5. 两条直线被第三条直线所截,构成八个角,在那些没有公共顶点的角中,如果两个角分别在两条直线的同一方,并且都在第三条直线的同侧,具有这种关系的一对角叫做_ ;如果两个角都在两直线之间,并且分别在第三条直线的两侧,具有这种关系的一对角叫做_ ;如果两个角都在两直线之间,但它们在第三条直线的同一旁,具有这种关系的一对角叫做_.6. 在同一平面内,不相交的两条直线互相_.
16、同一平面内的两条直线的位置关系只有_与_两种.7. 平行公理:经过直线外一点,有且只有一条直线与这条直线_.推论:如果两条直线都与第三条直线平行,那么_.8. 平行线的判定:两条直线被第三条直线所截,如果同位角相等,那么这两条直线平行.简单说成:_.两条直线被第三条直线所截,如果内错角相等,那么这两条直线平行.简单说成:_. 两条直线被第三条直线所截,如果同旁内角互补,那么这两条直线平行.简单说成:_.9. 在同一平面内,如果两条直线都垂直于同一条直线,那么这两条直线_ .10. 平行线的性质:两条平行直线被第三条直线所截,同位角相等.简单说成: .两条平行直线被第三条直线所截,内错角相等.简单说成:_.两条平行直线被第三条直线所截,同旁内角互补.简单说成:_ .