资源描述
(二次函数区间最值的例子)
第三种:构造函数求最值
题型特征:恒成立恒成立;从而转化为第一、二种题型
例3;已知函数图象上一点处的切线斜率为,
(Ⅰ)求的值;
(Ⅱ)当时,求的值域;
(Ⅲ)当时,不等式恒成立,求实数t的取值范围。
二、题型一:已知函数在某个区间上的单调性求参数的范围
解法1:转化为在给定区间上恒成立, 回归基础题型
解法2:利用子区间(即子集思想);首先求出函数的单调增或减区间,然后让所给区间是求的增或减区间的子集;
做题时一定要看清楚“在(m,n)上是减函数”与“函数的单调减区间是(a,b)”,要弄清楚两句话的区别:前者是后者的子集
例4:已知,函数.
(Ⅰ)如果函数是偶函数,求的极大值和极小值;
(Ⅱ)如果函数是上的单调函数,求的取值范围.
例5、已知函数
(I)求的单调区间;
(II)若在[0,1]上单调递增,求a的取值范围。子集思想
三、题型二:根的个数问题
题1函数f(x)与g(x)(或与x轴)的交点======即方程根的个数问题
解题步骤
第一步:画出两个图像即“穿线图”(即解导数不等式)和“趋势图”即三次函数的大致趋势“是先增后减再增”还是“先减后增再减”;
第二步:由趋势图结合交点个数或根的个数写不等式(组);主要看极大值和极小值与0的关系;
第三步:解不等式(组)即可;
例6、已知函数,,且在区间上为增函数.
(1) 求实数的取值范围;
(2) 若函数与的图象有三个不同的交点,求实数的取值范围.
根的个数知道,部分根可求或已知。
例7、已知函数
(1)若是的极值点且的图像过原点,求的极值;
(2)若,在(1)的条件下,是否存在实数,使得函数的图像与函数的图像恒有含的三个不同交点?若存在,求出实数的取值范围;否则说明理由。高1考1资1源2网
题2:切线的条数问题====以切点为未知数的方程的根的个数
例7、已知函数在点处取得极小值-4,使其导数的的取值范围为,求:(1)的解析式;(2)若过点可作曲线的三条切线,求实数的取值范围.
题3:已知在给定区间上的极值点个数则有导函数=0的根的个数
解法:根分布或判别式法
例8、
例9、已知函数,(1)求的单调区间;(2)令=x4+f(x)(x∈R)有且仅有3个极值点,求a的取值范围.
其它例题:
1、(最值问题与主元变更法的例子).已知定义在上的函数在区间上的最大值是5,最小值是-11.
(Ⅰ)求函数的解析式;
(Ⅱ)若时,恒成立,求实数的取值范围.
2、(根分布与线性规划例子)
(1)已知函数
(Ⅰ) 若函数在时有极值且在函数图象上的点处的切线与直线平行, 求的解析式;
(Ⅱ) 当在取得极大值且在取得极小值时, 设点所在平面区域为S, 经过原点的直线L将S分为面积比为1:3的两部分, 求直线L的方程.
解: (Ⅰ). 由, 函数在时有极值 ,
∴
∵ ∴
又∵ 在处的切线与直线平行,
∴ 故
∴ ……………………. 7分
(Ⅱ) 解法一: 由 及在取得极大值且在取得极小值,
∴ 即 令, 则
∴ ∴ 故点所在平面区域S为如图△ABC,
易得, , , , ,
同时DE为△ABC的中位线,
∴ 所求一条直线L的方程为:
另一种情况设不垂直于x轴的直线L也将S分为面积比为1:3的两部分, 设直线L方程为,它与AC,BC分别交于F、G, 则 ,
由 得点F的横坐标为:
由 得点G的横坐标为:
∴ 即
解得: 或 (舍去) 故这时直线方程为:
综上,所求直线方程为: 或 .…………….………….12分
(Ⅱ) 解法二: 由 及在取得极大值且在取得极小值,
∴ 即 令, 则
∴ ∴ 故点所在平面区域S为如图△ABC,
易得, , , , ,
同时DE为△ABC的中位线, ∴所求一条直线L的方程为:
另一种情况由于直线BO方程为: , 设直线BO与AC交于H ,
由 得直线L与AC交点为:
∵ , ,
∴ 所求直线方程为: 或
3、(根的个数问题)已知函数的图象如图所示。
(Ⅰ)求的值;
(Ⅱ)若函数的图象在点处的切线方程为,求函数f ( x )的解析式;
(Ⅲ)若方程有三个不同的根,求实数a的取值范围。
解:由题知:
(Ⅰ)由图可知 函数f ( x )的图像过点( 0 , 3 ),且= 0
得
(Ⅱ)依题意 = – 3 且f ( 2 ) = 5
解得a = 1 , b = – 6
所以f ( x ) = x3 – 6x2 + 9x + 3
(Ⅲ)依题意 f ( x ) = ax3 + bx2 – ( 3a + 2b )x + 3 ( a>0 )
= 3ax2 + 2bx – 3a – 2b 由= 0b = – 9a ①
若方程f ( x ) = 8a有三个不同的根,当且仅当 满足f ( 5 )<8a<f ( 1 ) ②
由① ② 得 – 25a + 3<8a<7a + 3<a<3
所以 当<a<3时,方程f ( x ) = 8a有三个不同的根。………… 12分
4、(根的个数问题)已知函数
(1)若函数在处取得极值,且,求的值及的单调区间;
(2)若,讨论曲线与的交点个数.
解:(1)
………………………………………………………………………2分
令得
令得
∴的单调递增区间为,,单调递减区间为…………5分
(2)由题得
即
令……………………6分
令得或……………………………………………7分
当即时
-
此时,,,有一个交点;…………………………9分
当即时,
+
—
,
∴当即时,有一个交点;
当即时,有两个交点;
当时,,有一个交点.………………………13分
综上可知,当或时,有一个交点;
当时,有两个交点.…………………………………14分
5、(简单切线问题)已知函数图象上斜率为3的两条切线间的距离为,函数.
(Ⅰ) 若函数在处有极值,求的解析式;
(Ⅱ) 若函数在区间上为增函数,且在区间上都成立,求实数的取值范围.
展开阅读全文