资源描述
苏教版《数学》(八年级上册)知识点总结
第一章 轴对称
1 轴对称图形和关于直线对称的两个图形
2 轴对称的性质
轴对称图形的对称轴是任何一对对应点所连线段的垂直平分线;
如果两个图形关于某条直线对称,那么对称轴是任何一对对应点所连的线段的垂直平分线;
线段垂直平分线上的点到线段两个端点的距离相等;
到线段两个端点距离相等的点在这条线段的垂直平分线上
3 用坐标表示轴对称
点(x,y)关于x轴对称的点的坐标是(x,-y),关于y轴对称的点的坐标是(-x,y),关于原点对称的点的坐标是(-x,-y).
4 等腰三角形
等腰三角形的两个底角相等;(等边对等角)
等腰三角形的顶角平分线、底边上的中线、底边上的高线互相重合;(三线合一)
一个三角形的两个相等的角所对的边也相等。(等角对等边)
5 等边三角形的性质和判定
等边三角形的三个内角都相等,都等于60度;
三个角都相等的三角形是等边三角形;
有一个角是60度的等腰三角形是等边三角形;
推论:
直角三角形中,如果有一个锐角是30度,那么他所对的直角边等于斜边的一半。
在三角形中,大角对大边,大边对大角。
第二章勾股定理、平方根
勾股定理和
平方根
勾股定理
平方根
立方根
实数
近似数、
有效数字
判定直角三角形
勾股定理的验证
定义、性质
开平方运算
开立方运算
定义、性质
一、勾股定理:
1、勾股定理定义:如果直角三角形的两直角边长分别为a,b,斜边长为c,那么
a2+b2=c2. 即直角三角形两直角边的平方和等于斜边的平方
勾:直角三角形较短的直角边
股:直角三角形较长的直角边
弦:斜边
勾股定理的逆定理:如果三角形的三边长a,b,c有下面关系:a2+b2=c2,那么这个三角形是直角三角形。
2. 勾股数:满足a2+b2=c2的三个正整数叫做勾股数(注意:若a,b,c、为勾股数,那么ka,kb,kc同样也是勾股数组。)
*附:常见勾股数:3,4,5; 6,8,10; 9,12,15; 5,12,13
3. 判断直角三角形:如果三角形的三边长a、b、c满足a2+b2=c2 ,那么这个三角形是直角三角形。(经典直角三角形:勾三、股四、弦五)
其他方法:(1)有一个角为90°的三角形是直角三角形。
(2)有两个角互余的三角形是直角三角形。
用它判断三角形是否为直角三角形的一般步骤是:
(1)确定最大边(不妨设为c);
(2)若c2=a2+b2,则△ABC是以∠C为直角的三角形;
若a2+b2<c2,则此三角形为钝角三角形(其中c为最大边);
若a2+b2>c2,则此三角形为锐角三角形(其中c为最大边)
4.注意:(1)直角三角形斜边上的中线等于斜边的一半
(2)在直角三角形中,如果一个锐角等于30°,那么它所对的直角边等于斜边的一半。
(3)在直角三角形中,如果一条直角边等于斜边的一半,那么这条直角边所对的角等于30°。
5. 勾股定理的作用:
(1)已知直角三角形的两边求第三边。
(2)已知直角三角形的一边,求另两边的关系。
(3)用于证明线段平方关系的问题。
(4)利用勾股定理,作出长为的线段
二、平方根:(11——19的平方)
1、平方根定义:如果一个数的平方等于a,那么这个数就叫做a的平方根。(也称为二次方根),也就是说如果x2=a,那么x就叫做a的平方根。
2、平方根的性质:
①一个正数有两个平方根,它们互为相反数;
一个正数a的正的平方根,记作“”,又叫做算术平方根,它负的平方根,记作“—”,这两个平方根合起来记作“±”。( a叫被开方数, “”是二次根号,这里“”,亦可写成“”)
②0只有一个平方根,就是0本身。算术平方根是0。
③负数没有平方根。
3、 开平方:求一个数的平方根的运算叫做开平方,开平方和平方运算互为逆运算。
4、(1) 平方根是它本身的数是零。
(2)算术平方根是它本身的数是0和1。
(3)
(4)一个数的两个平方根之和为0
三、立方根:(1——9的立方)
1、立方根的定义:如果一个数的立方等于a,那么这个数就叫做a的立方根。(也称为二次方根),也就是说如果x3=a,那么x就叫做a的立方根。记作“”。
2、立方根的性质:
①任何数都有立方根,并且只有一个立方根,正数的立方根是正数,负数的立方根是负数,0的立方根是0.
②互为相反数的数的立方根也互为相反数,即=
③
3、开立方:求一个数的立方根的运算叫做开立方,开立方与立方运算为互逆运算,开立方的运算结果是立方根。
4、立方根是它本身的数是1,0,-1。
5、平方根和立方根的区别:
(1)被开方数的取值范围不同:在中,,在中,a可以为任意数值。
(2)正数的平方根有两个,而它的立方根只有一个;负数没有平方根,而它有一个立方根。
6、立方根和平方根:
不同点:
(1)任何数都有立方根,正数和0有平方根,负数没有平方根;即被开方数的取值范围不同:±中的被开方数a是非负数;中的被开方数可以是任何数.
(2)正数有两个平方根,任何数都有惟一的立方根;
(3)立方根等于本身的数有0、1、—1,平方根等于本身的数只有0.
共同点:0的立方根和平方根都是0.
四、实数:
1、定义:有理数和无理数统称为实数
无理数:无限不循环小数称(包括所有开方开不尽的数,∏)。
有理数:有限小数或无限循环小数
注意:分数都是有理数,因为任何一个分数都可以化为有限小数或无限循环小数的形式
2、实数的分类:
实数
有理数
无理数 (无限不循环小数)
整数
分数
有限小数或无限循环小数
实数的性质:①实数的相反数、倒数、绝对值的意义与在有理数范围内的意义是一样的。
②实数同有理数一样,可用数轴上的点表示,且实数和数轴上的点一一对应。
③两个实数可以按有理数比较大小的法则比较大小。
④实数可以按有理数的运算法则和运算律进行运算。
3、近似数:由于实际中常常不需要用精确的数描述一个量,甚至在更多情况下不可能得到
精确的数,用以描述所研究的量,这样的数就叫近似数。
取近似值的方法——四舍五入法
4、有效数字:对一个近似数,从左边第一个不是0的数字起,到末位数字止,所有的数
都称为这个近似数的有效数字
5、科学记数法:
把一个数记为
6、实数和数轴:
每一个实数都可以用数轴上的点来表示;反过来,数轴上每一个点都表示一个实数。实数与数轴上的点是一一对应的。
第四章 数量、位置的变化
一、 在平面内,确定物体的位置一般需要两个数据。
二、平面直角坐标系及有关概念
1、平面直角坐标系
在平面内,两条互相垂直且有公共原点的数轴,组成平面直角坐标系。其中,水平的数轴叫做x轴或横轴,取向右为正方向;铅直的数轴叫做y轴或纵轴,取向上为正方向;x轴和y轴统称坐标轴。它们的公共原点O称为直角坐标系的原点;建立了直角坐标系的平面,叫做坐标平面。
2、为了便于描述坐标平面内点的位置,把坐标平面被x轴和y轴分割而成的四个部分,分别叫做第一象限、第二象限、第三象限、第四象限。
注意:x轴和y轴上的点(坐标轴上的点),不属于任何一个象限。
3、点的坐标的概念
对于平面内任意一点P,过点P分别x轴、y轴向作垂线,垂足在上x轴、y轴对应的数a,b分别叫做点P的横坐标、纵坐标,有序数对(a,b)叫做点P的坐标。
点的坐标用(a,b)表示,其顺序是横坐标在前,纵坐标在后,中间有“,”分开,横、纵坐标的位置不能颠倒。平面内点的坐标是有序实数对,当时,(a,b)和(b,a)是两个不同点的坐标。
平面内点的与有序实数对是一一对应的。
4、不同位置的点的坐标的特征
(1)、各象限内点的坐标的特征
点P(x,y)在第一象限
点P(x,y)在第二象限
点P(x,y)在第三象限
点P(x,y)在第四象限
(2)、坐标轴上的点的特征
点P(x,y)在x轴上,x为任意实数
点P(x,y)在y轴上,y为任意实数
点P(x,y)既在x轴上,又在y轴上x,y同时为零,即点P坐标为(0,0)即原点
(3)、两条坐标轴夹角平分线上点的坐标的特征
点P(x,y)在第一、三象限夹角平分线(直线y=x)上x与y相等
点P(x,y)在第二、四象限夹角平分线上x与y互为相反数
(4)、和坐标轴平行的直线上点的坐标的特征
位于平行于x轴的直线上的各点的纵坐标相同。
位于平行于y轴的直线上的各点的横坐标相同。
(5)、关于x轴、y轴或原点对称的点的坐标的特征
点P与点p’关于x轴对称横坐标相等,纵坐标互为相反数,即点P(x,y)关于x轴的对称点为P’(x,-y)
点P与点p’关于y轴对称纵坐标相等,横坐标互为相反数,即点P(x,y)关于y轴的对称点为P’(-x,y)
点P与点p’关于原点对称横、纵坐标均互为相反数,即点P(x,y)关于原点的对称点为P’(-x,-y)
(6)、点到坐标轴及原点的距离
点P(x,y)到坐标轴及原点的距离:
(1)点P(x,y)到x轴的距离等于
(2)点P(x,y)到y轴的距离等于
(3)点P(x,y)到原点的距离等于
三、坐标变化与图形变化的规律:
坐标( x , y )的变化
图形的变化
x × a或 y × a
被横向或纵向拉长(压缩)为原来的 a倍
x × a, y × a
放大(缩小)为原来的 a倍
x ×( -1)或 y ×( -1)
关于 y 轴或 x 轴对称
x ×( -1), y ×( -1)
关于原点成中心对称
x +a或 y+ a
沿 x 轴或 y 轴平移 a个单位
x +a, y+ a
沿 x 轴平移 a个单位,再沿 y 轴平移 a个单
第五章 一次函数
一、函数:
一般地,在某一变化过程中有两个变量x与y,如果给定一个x值,相应地就确定了一个y值,那么我们称y是x的函数,其中x是自变量,y是因变量。
二、自变量取值范围
使函数有意义的自变量的取值的全体,叫做自变量的取值范围。一般从整式(取全体实数),分式(分母不为0)、二次根式(被开方数为非负数)、实际意义几方面考虑。
三、函数的三种表示法及其优缺点
(1)关系式(解析)法
两个变量间的函数关系,有时可以用一个含有这两个变量及数字运算符号的等式表示,这种表示法叫做关系式(解析)法。
(2)列表法
把自变量x的一系列值和函数y的对应值列成一个表来表示函数关系,这种表示法叫做列表法。
(3)图象法
用图象表示函数关系的方法叫做图象法。
四、由函数关系式画其图像的一般步骤
(1)列表:列表给出自变量与函数的一些对应值
(2)描点:以表中每对对应值为坐标,在坐标平面内描出相应的点
(3)连线:按照自变量由小到大的顺序,把所描各点用平滑的曲线连接起来。
五、正比例函数和一次函数
1、正比例函数和一次函数的概念
一般地,若两个变量x,y间的关系可以表示成(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量,y为因变量)。
特别地,当一次函数中的b=0时(即)(k为常数,k0),称y是x的正比例函数。
2、一次函数的图像: 所有一次函数的图像都是一条直线
3、一次函数、正比例函数图像的主要特征:
一次函数的图像是经过点(0,b)的直线;正比例函数的图像是经过原点(0,0)的直线。
k的符号
b的符号
函数图像
图像特征
k>0
b>0
y
0 x
图像经过一、二、三象限,y随x的增大而增大。
b<0
y
0 x
图像经过一、三、四象限,y随x的增大而增大。
K<0
b>0
y
0 x
图像经过一、二、四象限,y随x的增大而减小
b<0
y
0 x
图像经过二、三、四象限,y随x的增大而减小。
注:当b=0时,一次函数变为正比例函数,正比例函数是一次函数的特例。
4、正比例函数的性质
一般地,正比例函数有下列性质:
(1)当k>0时,图像经过第一、三象限,y随x的增大而增大;
(2)当k<0时,图像经过第二、四象限,y随x的增大而减小。
5、一次函数的性质
一般地,一次函数有下列性质:
(1)当k>0时,y随x的增大而增大
(2)当k<0时,y随x的增大而减小
6、正比例函数和一次函数解析式的确定
确定一个正比例函数,就是要确定正比例函数定义式(k0)中的常数k。确定一个一次函数,需要确定一次函数定义式(k0)中的常数k和b。解这类问题的一般方法是待定系数法。
7、一次函数与一元一次方程的关系:
任何一个一元一次方程都可转化为:kx+b=0(k、b为常数,k≠0)的形式. 而一次函数解析式形式正是y=kx+b(k、b为常数,k≠0).当函数值为0时,即kx+b=0就与一元一次方程完全相同.
结论:由于任何一元一次方程都可转化为kx+b=0(k、b为常数,k≠0)的形式.所以解一元一次方程可以转化为:当一次函数值为0时,求相应的自变量的值.
从图象上看,这相当于已知直线y=kx+b确定它与x轴交点的横坐标值.
第六章 数据的集中程度
1、刻画数据的集中趋势(平均水平)的量:平均数 、众数、中位数
2、平均数
(1)平均数:一般地,对于n个数我们把叫做这n个数的算术平均数,简称平均数,记为。
(2)加权平均数:
3、众数
一组数据中出现次数最多的那个数据叫做这组数据的众数。
4、中位数
一般地,将一组数据按大小顺序排列,处于最中间位置的一个数据(或最中间两个数据的平均数)叫做这组数据的中位数。
初二数学上册期末试卷
一、耐心填一填:(每题2分,共20分.把最后结果填在每题横线上)
1.的相反数是 .
2. 当x 时,分式有意义.
3. 如图,,=30°,则的度数为 °.
4. 如图,∠1=∠2,要使△ABE≌△ACE,还需添加条件 (只需填上一个你认为合适的条件即可).
5.如图,是一个正比例函数的图像,则此函数图像的解析式为 .
6. 一个正数x的平方根为和,则x= .
7. 已知直线和在平面直角坐标系中的位置如图所示,不等式的解集是 .
8. 如图,△ACB中,∠C=90°,AD平分∠BAC,BC=10,BD=6,AB=12,则S△ABD= .
9. 因式分解= .
10.一次函数的图像过点(1,0),则m= .
得分 评卷人
二、细心选一选:(每题3分,共24分.下列各题都有代号为A、B、C、D的四个结论供选择,其中只有一个结论是正确的,请把正确结论的代号写在括号内.)
11. 下列计算正确的是 ( )
A. B. C. D.
12. 若m+n=3,则的值为 ( )
A.12 B. C.3 D.0
13. 下列四个图形中,不是轴对称图形的是 ( )
A. B. C. D.
14.如果将分式中都扩大10倍,则分式的值 ( )
A.扩大100倍 B.扩大10倍 C.不变 D.缩小到原来的
15.到三角形三个顶点距离相等的点是三角形 ( )
A.角平分线的交点 B.中线的交点 C.三边上高的交点 D.三边垂直平分线的交点
16. 若等腰三角形的两边长分别为8cm和4cm,则它的周长为 ( )
A.12cm B.16cm C.16cm或20cm D.20cm
17. 如图,给出下列四组条件:
① ②
③ ④
其中,能使的条件共有 ( )
A.1组 B.2组 C.3组 D.4组
18. 如图,在矩形中,AB=4,,动点P从点B出发,沿路线作匀速运动,那么的面积S与点P运动的路程之间的函数图象大致是 ( )
得分 评卷人
三、认真算一算,可要细心哦!
(第19题每小题5分,第20、 21题每题6分,共22分)
19.计算题:
(1) (2)
20.已知直线,当时,,求此函数关系式.
21.已知: 求(1); (2)的值.
四、想一想,做一做,相信你定能成功!不过要注意时间啊!(本大题共34分)
得分 评卷人
22.(本题5分)已知平面内有两点A(-1,3)、B(2,1),x轴上有一点P满足PA+PB的值最小,请在x轴上标出点P的位置,并求出点P的坐标.
得分 评卷人
23.(本题6分)如图,在 △ABC的外部,分别以AB、AC为直角边,点A为直角顶点,作等腰直角△ABD和等腰直角△ACE, CD与BE交于点P. 试证:(1) CD=BE ;(2) ∠BPC=90°.
得分 评卷人
24.(本题6分)如图,AD为△ABC的角平
分线,DE⊥AB于点E,DF⊥AC于点F,连
接EF交AD于点G.
(1)求证:AD垂直平分EF;
(2)若∠BAC=60°,猜测DG与AG间有何数量关系?请说明理由.
得分 评卷人
25. (本题7分)在一次运输任务中,一辆汽车将一批货物从甲地运往乙地,到达乙地卸货后返回.设汽车从甲地出发x(h)时,汽车与甲地的距离为y(km),y与x的函数关系如图所示.
根据图像信息,解答下列问题:
(1)这辆汽车的往、返速度是否相同?请说明理由;
(2)求返程中y与x之间的函数表达式;
(3)求这辆汽车从甲地出发4h时与甲地的距离.
得分 评卷人
26. (本题10分)已知直线l1经过点(3,5)与(-4,-9),直线l3∥l1,且过直线l2与y轴的交点B,交x轴于点A,已知直线l2:.
(1)画出直线l3的位置,求出直线l1、 l3的解析式和点A的坐标.
(2)若点是线段AB上的一动点,△OPA的面积为S,求:
①S关于x的函数关系式,并写出自变量x的取值范围;
②请求出S的最大值或最小值.
展开阅读全文