1、勾股定理练习题一、基础达标:1. 下列说法正确的是()A.若 a、b、c是ABC的三边,则a2b2c2;B.若 a、b、c是RtABC的三边,则a2b2c2;C.若 a、b、c是RtABC的三边,则a2b2c2;D.若 a、b、c是RtABC的三边,则a2b2c22. RtABC的三条边长分别是、,则下列各式成立的是()A B. C. D. 3 如果Rt的两直角边长分别为k21,2k(k 1),那么它的斜边长是()A、2kB、k+1C、k21D、k2+14. 已知a,b,c为ABC三边,且满足(a2b2)(a2+b2c2)0,则它的形状为()A.直角三角形B.等腰三角形 C.等腰直角三角形D.
2、等腰三角形或直角三角形5 直角三角形中一直角边的长为9,另两边为连续自然数,则直角三角形的周长为()A121 B120 C90 D不能确定6 ABC中,AB15,AC13,高AD12,则ABC的周长为() A42 B32 C42 或 32 D37 或 337.直角三角形的面积为,斜边上的中线长为,则这个三角形周长为( )(A) (B) (C) (D)8、在平面直角坐标系中,已知点P的坐标是(3,4),则OP的长为( )A:3 B:4 C:5 D:9若ABC中,AB=25cm,AC=26cm高AD=24,则BC的长为( )A17 B.3 C.17或3 D.以上都不对10已知a、b、c是三角形的三
3、边长,如果满足则三角形的形状是( )A:底与边不相等的等腰三角形 B:等边三角形 C:钝角三角形 D:直角三角形11斜边的边长为,一条直角边长为的直角三角形的面积是 12. 等腰三角形的腰长为13,底边长为10,则顶角的平分线为.13. 一个直角三角形的三边长的平方和为200,则斜边长为 14一个三角形三边之比是,则按角分类它是 三角形15. 一个三角形的三边之比为51213,它的周长为60,则它的面积是.16. 在RtABC中,斜边AB=4,则AB2BC2AC2=_17若三角形的三个内角的比是,最短边长为,最长边长为,则这个三角形三个角度数分别是 ,另外一边的平方是 ACB18如图,已知中,
4、以直角边为直径作半圆,则这个半圆的面积是 19 一长方形的一边长为,面积为,那么它的一条对角线长是 二、综合发展:1如图,一个高、宽的大门,需要在对角线的顶点间加固一个木条,求木条的长2、有一个直角三角形纸片,两直角边AC=6cm,BC=8cm,现将直角边AC沿CAB的角平分线AD折叠,使它落在斜边AB上,且与AE重合,你能求出CD的长吗? 3.一个三角形三条边的长分别为,这个三角形最长边上的高是多少?4如图,要修建一个育苗棚,棚高h=3m,棚宽a=4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?5如图,有一只小鸟在一棵高13m的大树树梢上捉虫子,它的伙伴在离该树1
5、2m,高8m的一棵小树树梢上发出友好的叫声,它立刻以2m/s的速度飞向小树树梢,它最短要飞多远?这只小鸟至少几秒才可能到达小树和伙伴在一起?小汽车小汽车15“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?CBA观测点答案:一、基础达标1. 解析:利用勾股定理正确书写三角形三边关系的关键是看清谁是直角答案: D.2. 解析:本题考察三角形的三边关系和勾股定理.答案:B.3 解析:设另一条直角边为x,则斜边为(x
6、+1)利用勾股定理可得方程,可以求出x然后再求它的周长.答案:C4解析:解决本题关键是要画出图形来,作图时应注意高AD是在三角形的内部还是在三角形的外部,有两种情况,分别求解.答案:C.5 解析: 勾股定理得到:,另一条直角边是15,所求直角三角形面积为答案: 6 解析:本题目主要是强调直角三角形中直角对的边是最长边,反过来也是成立答案:,直角,斜,直角7 解析:本题由边长之比是 可知满足勾股定理,即是直角三角形答案:直角8 解析:由三角形的内角和定理知三个角的度数,断定是直角三角形答案:、,39 解析:由勾股定理知道:,所以以直角边为直径的半圆面积为10.125答案:10.12510 解析:
7、长方形面积长宽,即12长3,长,所以一条对角线长为5答案:二、综合发展11 解析:木条长的平方=门高长的平方+门宽长的平方答案:12解析:因为,所以这三角形是直角三角形,设最长边(斜边)上的高为,由直角三角形面积关系,可得,答案:12cm13解析:透阳光最大面积是塑料薄膜的面积,需要求出它的另一边的长是多少,可以借助勾股定理求出.答案:在直角三角形中,由勾股定理可得:直角三角形的斜边长为5m,所以矩形塑料薄膜的面积是:520=100(m2) 14解析:本题的关键是构造直角三角形,利用勾股定理求斜边的值是13m,也就是两树树梢之间的距离是13m,两再利用时间关系式求解.答案:6.5s15解析:本题和14题相似,可以求出BC的值,再利用速度等于路程除以时间后比较.BC=40米,时间是2s,可得速度是20m/s=72km/hkm/h答案:这辆小汽车超速了