1、可编辑版初中数学计算题大全(一) 计算下列各题1 . 2 3 45 + + 67 8 (1) (2)9、(1)-23+(-37)-(-12)+45; (2)(-6)210 11(1) (2)124 1314 15;1617(1) (2)18 19 20 。21 2223参考答案1解=1|1|2+2 =1+12+2 = 【解析】略25【解析】原式=14-9=53【解析】解: 先算乘方,再算乘除,最后算加减,有括号的先算括号里面的。注意:底数是4,有小数又有分数时,一般都化成分数再进行计算。4【解析】略 5364 【解析】主要考查实数的运算,考查基本知识和基本的计算能力,题目简单,但易出错,计算需
2、细心。1、+ +2、7【解析】试题分析:先化简,再合并同类二次根式即可计算出结果.试题解析:考点: 二次根式的运算.8(1)32(2)9200【解析】(1)原式=4+27+1 =32 (2)原式=23(1012-992) (1分) =23(101+99)(101-99)(2分) =23=9200 (1分)利用幂的性质求值。利用乘法分配律求值。9(1)-3;(2)10【解析】试题分析:(1)把有理数正负数分开相加即可;(2)先算乘方,再运用乘法分配律,要注意不要漏乘即可.试题解析:解:(1)-23+(-37)-(-12)+45= 2337+12+45= 2337+12+45=-3; (2)(-6
3、)2=36=2468=10考点:有理数的混合运算10-30【解析】原式=-45-35+50=-3011(1);(2).【解析】试题分析:(1)先把二次根式化成最简二次根式之后,再合并同类二次根式即可求出答案;(2)先把二次根式化成最简二次根式之后,再进行二次根式的乘除法运算.试题解析:(1);(2)考点: 二次根式的化简与计算.1213 【解析】此题考查根式的计算解:12原式=.13原式=.答案:【小题1】【小题2】14解:原式= 【解析】略157.【解析】试题分析:注意运算顺序.试题解析:= 考点:有理数的混合运算.16解:原式4分6分 8分【解析】略17(1)(2)2【解析】试题分析:(1
4、)(2)考点:实数运算点评:本题难度较低,主要考查学生对平方根实数运算知识点的掌握。要求学生牢固掌握解题技巧。18【解析】试题分析:考点:有理数的运算19-2.【解析】试题分析:根据负整数指数幂的意义和绝对值的意义得到原式=2-4-+2-,然后合并即可试题解析:原式=2-4-+2-=-2.考点:1.二次根式的混合运算;2.负整数指数幂20解:原式=。【解析】针对有理数的乘方,绝对值,零指数幂,立方根化简,负整数指数幂5个考点分别进行计算,然后根据实数的运算法则求得计算结果。21【解析】试题分析:先进行二次根式化简,再进行计算即可.试题解析:考点: 二次根式的化简. 22-6分-23-6分- 【
5、解析】略初中数学计算题大全(二)1计算题:;解方程:2计算:+(2013)03计算:|1|2cos30+()0(1)20134计算:5计算:6、7计算:8计算:9 计算:10计算:11计算:12 13 计算:14计算:(3.14)0+|3|+(1)2013+tan4515计算:16计算或化简:(1)计算21tan60+(2013)0+|(2) (a2)2+4(a1)(a+2)(a2)17计算:(1) (1)2013|7|+0+()1;(2) 18 计算:19 (1)(2) 解方程:20计算:(1)tan45+sin230cos30tan60+cos245;(2) 21 (1)|3|+16(2)
6、3+(2013)0tan60(2) 解方程:=22 (1)计算:.(2) 求不等式组的整数解23 (1)计算:(2) 先化简,再求值:(),其中x=+124 (1)计算:tan30(2) 解方程:25计算:(1)(2) 先化简,再求值:+,其中x=2+126 (1)计算:; (2) 解方程:27 计算:28 计算:29 计算:(1+)20132(1+)20124(1+)201130 计算:参考答案与试题解析一解答题(共30小题)1计算题:;解方程:考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值165435 专题:计算题分析:根据零指数幂、特殊角的三角函数值、绝对值求出每一部分的值,
7、再代入求出即可;方程两边都乘以2x1得出25=2x1,求出方程的解,再进行检验即可解答:解:原式=1+1,=2;解:方程两边都乘以2x1得:25=2x1,解这个方程得:2x=2,x=1,检验:把x=1代入2x10,即x=1是原方程的解点评:本题考查了解分式方程,零指数幂,绝对值,特殊角的三角函数值等知识点的应用,小题是一道比较容易出错的题目,解小题的关键是把分式方程转化成整式方程,同时要注意:解分式方程一定要进行检验2计算:+(2013)0考点:实数的运算;零指数幂165435 专题:计算题分析:根据零指数幂的意义得到原式=12+1+1,然后合并即可解答:解:原式=12+1+1=1点评:本题考
8、查了实数的运算:先进行乘方或开方运算,再进行加减运算,然后进行加减运算也考查了零指数幂3计算:|1|2cos30+()0(1)2013考点:实数的运算;零指数幂;特殊角的三角函数值165435 分析:根据绝对值的概念、特殊三角函数值、零指数幂、乘方的意义计算即可解答:解:原式=12+1(1)=11=2点评:本题考查了实数运算,解题的关键是注意掌握有关运算法则4计算:考点:有理数的混合运算165435 专题:计算题分析:先进行乘方运算和去绝对值得到原式=8+3.141+9,然后进行加减运算解答:解:原式=8+3.141+9=3.14点评:本题考查了有理数的混合运算:先算乘方,再算乘除,然后进行加
9、减运算;有括号先算括号5计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:根据负整数指数幂、零指数幂以及特殊角的三角函数值得到原式=(1)14,然后进行乘法运算后合并即可解答:解:原式=(1)14=14=3点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号也考查了负整数指数幂、零指数幂以及特殊角的三角函数值6考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 分析:分别进行二次根式的化简、负整数指数幂、零指数幂、然后代入特殊角的三角函数值,最后合并即可得出答案解答:解:原式=421+3=3
10、点评:本题考查了实数的运算,涉及了二次根式的化简、负整数指数幂、零指数幂的运算,解答本题的关键是熟练掌握各部分的运算法则7计算:考点:实数的运算;零指数幂;负整数指数幂165435 专题:计算题分析:根据负整数指数幂、零指数幂的意义和二次根式的乘法得到原式=4+14,然后化简后合并即可解答:解:原式=4+14=4+142=1点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号也考查了负整数指数幂和零指数幂8计算:考点:实数的运算;零指数幂;负整数指数幂165435 分析:分别进行二次根式的化简、零指数幂及负整数指数幂的运算,然后合并即可得出答案解答:解:原式=
11、29+15=11点评:本题考查了实数的运算,涉及了二次根式的化简、零指数幂及负整数指数幂,属于基础题,掌握各部分的运算法则是关键9计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 分析:分别进行负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的化简等运算,然后按照实数的运算法则计算即可解答:解:原式=21+22=1点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、特殊角的三角函数值、绝对值的化简等知识,属于基础题10计算:考点:实数的运算;零指数幂;特殊角的三角函数值165435 分析:分别进行零指数幂、绝对值的运算,然后代入特殊角的三角函数值,继而合并
12、可得出答案解答:解:原式=1+2+3=3+1=2点评:本题考查了实数的运算,涉及了零指数幂、绝对值的运算,注意熟练掌握一些特殊角的三角函数值11计算:考点:二次根式的混合运算;特殊角的三角函数值165435 分析:首先计算乘方开方运算,代入特殊角的三角函数值,然后合并同类二次根式即可求解解答:解:原式=1+(1)=1+1=2点评:本题考查了二次根式的化简、特殊角的三角函数值,正确理解根式的意义,对二次根式进行化简是关键12考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:原式第一项利用立方根的定义化简,第二项利用负数的绝对值等于它的相反数计算,第三项利
13、用零指数幂法则计算,第四项利用负指数幂法则计算,第五项利用1的奇次幂为1计算,最后一项利用特殊角的三角函数值化简,即可得到结果解答:解:原式=34+181+=点评:此题考查了实数的运算,涉及的知识有:零指数幂、负指数幂,绝对值,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键13计算:考点:实数的运算;零指数幂;负整数指数幂165435 专题:计算题分析:零指数幂以及负整数指数幂得到原式=41132,再计算乘法运算,然后进行加减运算解答:解:原式=41132=4132=2点评:本题考查了实数的运算:先算乘方或开方,再算乘除,然后进行加减运算;有括号先算括号也考查了零指数幂以及负整数指数幂
14、14计算:(3.14)0+|3|+(1)2013+tan45考点:实数的运算;零指数幂;特殊角的三角函数值165435 专题:计算题分析:本题涉及零指数幂、乘方、特殊角的三角函数值、二次根式化简四个考点针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解答:解:原式=31+31+1=5点评:本题考查实数的综合运算能力,是各地中考题中常见的计算题型解决此类题目的关键是掌握零指数幂、乘方、特殊角的三角函数值、二次根式化简考点的运算15计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:根据负整数指数幂、零指数幂和cos30=得到原式=21+2
15、013,再进行乘法运算,然后合并同类二次根式即可解答:解:原式=21+2013=1+2013=2012点评:本题考查了实数的运算:先进行乘方或开方运算,再进行乘除运算,然后进行加减运算也考查了负整数指数幂、零指数幂以及特殊角的三角函数值16计算或化简:(1)计算21tan60+(2013)0+|(2)(a2)2+4(a1)(a+2)(a2)考点:整式的混合运算;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 分析:(1)首先带入特殊角的三角函数值,计算乘方,去掉绝对值符号,然后进行加减运算即可;(2)首先利用乘法公式计算多项式的乘法,然后合并同类项即可求解解答:解:(1)原
16、式=+1+=3+1+=1;(2)原式=(a24a+4)+4a4(a24)=a24a+4+4a4a2+4=8点评:本题考查了整式的混合运算,以及乘法公式,理解运算顺序是关键17计算:(1)(1)2013|7|+0+()1;(2)考点:实数的运算;零指数幂;负整数指数幂165435 专题:计算题分析:(1)根据零指数幂的意义和进行开方运算得到原式=17+31+5,再进行乘法运算,然后进行加减运算;(2)先进行乘方和开方运算得到原式=22+2,然后进行加减运算解答:解:(1)原式=17+31+5=17+3+5=8+8=0;(2)原式=22+2=点评:本题考查实数的运算:先算乘方或开方,再算乘除,然后
17、进行加减运算;有括号先算括号也考查了零指数幂与负整数指数幂18计算:考点:实数的运算;零指数幂165435 专题:计算题分析:原式第一项利用立方根的定义化简,第二项利用二次根式的化简公式化简,第三项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果解答:解:原式=3+31(4)=5点评:此题考查了实数的运算,涉及的知识有:立方根定义,零指数幂,二次根式的化简,以及绝对值的代数意义,熟练掌握运算法则是解本题的关键19(1)(2)解方程:考点:解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 分析:(1)由有理数的乘方运算、负指数幂、零指数幂以及
18、绝对值的性质,即可将原式化简,然后求解即可求得答案;(2)首先观察方程可得最简公分母是:(x1)(x+1),然后两边同时乘最简公分母可把分式方程化为整式方程来解答,注意分式方程需检验解答:解:(1)原式=14+1+|12|=4+1+1=4;(2)方程两边同乘以(x1)(x+1),得:2(x+1)=3(x1),解得:x=5,检验:把x=5代入(x1)(x+1)=240,即x=1是原方程的解故原方程的解为:x=5点评:此题考查了实数的混合运算与分式方程额解法此题比较简单,注意掌握有理数的乘方运算、负指数幂、零指数幂以及绝对值的性质,注意分式方程需检验20计算:(1)tan45+sin230cos3
19、0tan60+cos245;(2)考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)先根据特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可;(2)根据实数混合运算的法则先算乘方,再算乘法,最后算加减即可解答:解:(1)原式=1+()2+()2=1+=;(2)原式=83114=8314=点评:本题考查的是实数的运算,在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到有的顺序进行21(1)|3|+16(2)3+(2013)0tan60(2)解方程
20、:=考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)原式第一项利用负数的绝对值等于它的相反数计算,第二项先计算乘方运算,再计算除法运算,第三项利用零指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:(1)原式=32+13=1;(2)去分母得:3(5x4)=2(2x+5)6(x2),去括号得:17x=34,解得:x=2,经检验x=2是增根,原分式方程无解点评:此题考查了解分式方程,以及实数的运算,解分式方程的基本思想是“转化思想”,把
21、分式方程转化为整式方程求解解分式方程一定注意要验根22(1)计算:.(2)求不等式组的整数解考点:一元一次不等式组的整数解;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)分别进行负整数指数幂、零指数幂及绝对值的运算,然后代入特殊角的三角函数值即可(2)解出两不等式的解,继而确定不等式组的解集,也可得出不等式组的整数解解答:解:(1)原式=1(2),解不等式,得x1,解不等式,得x3,故原不等式组的解集为:1x3,它的所有整数解为:1、2点评:本题考查了不等式组的整数解及实数的运算,注意掌握不等式组解集的求解办法,负整数指数幂及零指数幂的运算法则是关
22、键23(1)计算:(2)先化简,再求值:(),其中x=+1考点:分式的化简求值;实数的运算;零指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)原式第一项利用负数的绝对值等于它的相反数计算,第二项利用特殊角的三角函数值化简,第三项利用立方根的定义化简,最后一项利用零指数幂法则计算,即可得到结果;(2)原式括号中两项通分并利用同分母分式的加法法则计算,同时利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分得到最简结果,将x的值代入计算即可求出值解答:解:(1)原式=3+21=1;(2)原式=x+2,当x=+1时,原式=+3点评:此题考查了分式的化简求值,以及实数的运算,
23、分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式24(1)计算:tan30(2)解方程:考点:解分式方程;实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)原式第一项利用绝对值的代数意义化简,第二项利用零指数幂法则计算,第三项利用负指数幂法则计算,最后一项利用特殊角的三角函数值化简,即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:(1)原式=2+1(3)+3=2+1+3+=6;(2)去分母得:1=x13(x2),去括号得:1=x13x+6
24、,解得:x=2,经检验x=2是增根,原分式方程无解点评:此题考查了解分式方程,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式方程一定注意要验根25计算:(1)(2)先化简,再求值:+,其中x=2+1考点:分式的化简求值;实数的运算;零指数幂;负整数指数幂165435 分析:(1)根据乘方、绝对值的定义、二次根式的化简、零指数幂、负整数指数幂的法则计算即可;(2)先把分子分母因式分解,然后计算除法,最后计算加法,化简后把x的值代入计算即可解答:解:(1)原式=17+31+5=0;(2)原式=+=+=,当x=2+1时,原式=点评:本题考查了实数运算,分式的化简求值,解题的关
25、键是掌握有关运算法则,以及注意通分和约分26(1)计算:; (2)解方程:考点:解分式方程;实数的运算;零指数幂;特殊角的三角函数值165435 专题:计算题分析:(1)原式第一项利用特殊角的三角函数值化简,第二项利用零指数幂法则计算,最后一项利用绝对值的代数意义化简,计算即可得到结果;(2)分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解解答:解:(1)原式=2+1+2=3;(2)去分母得:25=2x1,解得:x=1,经检验x=1是分式方程的解点评:此题考查了解分式方程,以及实数的运算,解分式方程的基本思想是“转化思想”,把分式方程转化为整式方程求解解分式
26、方程一定注意要验根27计算:考点:实数的运算;零指数幂;负整数指数幂165435 分析:分别进行负整数指数幂、零指数幂、绝对值、乘方以及二次根式化简等运算,然后按照实数的运算法则计算即可解答:解:原式=31+4+12=5点评:本题考查了实数的运算,涉及了负整数指数幂、零指数幂、绝对值、乘方以及二次根式化简等知识,属于基础题28计算:考点:实数的运算;零指数幂;负整数指数幂;特殊角的三角函数值165435 专题:计算题分析:分别根据0指数幂、负整数指数幂的运算法则,绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可解答:解:原式=1+2(2)1=点评:本题考查的是实
27、数的运算,熟知0指数幂、负整数指数幂的运算法则,绝对值的性质及特殊角的三角函数值是解答此题的关键29计算:(1+)20132(1+)20124(1+)2011考点:二次根式的混合运算165435 专题:计算题分析:先利用提公因式的方法提出(1+)2011,得到原式=(1+)2011(1+)22(1+)4,然后计算中括号,再进行乘法运算解答:解:原式=(1+)2011(1+)22(1+)4=(1+)20111+2+5224=(1+)20110=0点评:本题考查了二次根式的混合运算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式30计算:考点:幂的乘方与积的乘方;零
28、指数幂;负整数指数幂165435 分析:根据负整数指数幂、零指数幂、幂的乘方与积的乘方等知识点进行作答解答:解:原式=8+11=8点评:本题考查了负整数指数幂、零指数幂、幂的乘方与积的乘方,熟练掌握运算性质和法则是解题的关键 初中数学计算题大全(三)1 26(-6) 3 4解下列方程:(1) (2) 5解方程:6 (用配方法解)7(用公式法解)8 9 10(1):(2)已知:tan60sin,求锐角.11(1). (2).(-+-)(-36)12 已知= 3,=2,求代数式的值13解方程(本小题共6分)(1); (2)14计算:15解不等式组,并把它们的解集在数轴上表示出来. (1) (2)1
29、6 17(5)(8)(28)418 192(2)2(1)20 +|4|0.5+2(1) 21 . 24 25 :30(1 +)(48) 31|4|(2)0 参考答案1.【解析】试题分析:针对绝对值,负整数指数幂,零指数幂,二次根式化简,有理数的乘方5个考点分别进行计算,然后根据实数的运算法则求得计算结果.原式=.考点:1.实数的运算;2.绝对值;3.负整数指数幂;4.零指数幂;5.二次根式化简;6有理数的乘方.2-36 【解析】此题考查负数的计算解:原式=答案:-363-17. 【解析】试题分析:根据整式的混合运算,结合0次幂,负指数次幂的法则,进行计算即可.试题解析:原式=-1+1-9-8=
30、-17考点:实数的0次幂;负指数次幂.4(1)(2) 【解析】试题分析:(1)2x-2=3x+5 解得:2x-3x=2+5,x=-7(2)方程两边同时乘以最小公分母6,得:2(2x+1)-(5x-1)=6解得x=-3考点:一元一次方程点评:本题难度较低。主要考查学生对解方程的学习。 5 【解析】先把第二个方程去分母得3x-4y=-2,然后两方程相加解得x=3, 把x=3代入任意一方程解得y=,所以方程组的解为6 (4分)7 【解析】利用配方法求解利用公式法求解。8 【解析】此题考查根式的计算解:原式=.答案:9【解析】解:原式针对有理数的乘方,二次根式化简,特殊角的三角函数值,绝对值4个考点分
31、别进行计算,然后根据实数的运算法则求得计算结果。10(1);(2)30【解析】试题分析:(1)cos30=,tan45=1,sin60=,代入运算即可;(2)计算出sin的值,然后即可得出的度数试题解析:(1)原式=;(2)由题意得,sin=,又为锐角,=30考点:特殊角的三角函数值11(1)-19(2)-11【解析】(1)原式=-99-18=-1-18=-19(2)原式= =-28+30-27+14 =-1112解:原式=。 当= 3,=2时,原式= 。【解析】分式运算法则。【分析】先将括号里面的通分后,将除法转换成乘法,约分化简。然后代= 3,=2的值,求出特殊角的三角函数值后进行二次根式
32、化简。13 【解析】(1)(2)14【解析】试题分析:原式第一项利用零指数幂法则计算,第二项利用绝对值的代数意义化简,第三项利用特殊角的三角函数值计算,最后一项利用立方根定义化简计算即可得到结果试题解析:原式=1+1+-2=【考点】1.实数的运算;2.零指数幂;3.特殊角的三角函数值15(1) (2) 【解析】试题分析:(1) 2得x-3+62x整理得x3; 整理得1-3x+3-8+x0,解得x-2所以该不等式组的解集为(2)整理得所以其解集考点:解不等式 1645 1747 189190 202 解答:解:(1)-40-(-19)+(-24)=-40+19-24=-45;(2)(-5)(-8
33、)-(-28)4=40+7=47;(3)(+-)12=6+10-7=9;(4)-22-(-2)2-23(-1)2011=-4-4+8,=0;(5)-32+|-4|0.52+2(-1)2=-4+1+5=2点评:本题考查的是有理数的运算能力21解:原式 3分 7分 10分 【解析】分析:根据乘法的分配律得到原式=,再进行约分,然后进行加减运算解答:原式 点评:本题考查了有理数的乘法:利用乘法的分配律可简化运算24、【答案】【解析】此题考查学生的计算能力思路:分别将每项计算出来,再化简解:原式点评:点评:此题属于低档试题,计算要小心。25解:原式. 分【解析】涉及零指数幂、绝对值、二次根式化简三个考点针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果解:原式=2-1+2=3 30-76【解析】原式=-48+8-36=-7631解:原式 (6分) (9分)【解析】略多年的财务工作实践给了我巨大的舞台来提高自已观察问题、分析问题、处理问题的能力,使我的业务水平和工作能力得到了长足的进步,但我也清醒地认识到,自己的工作中还存在许多不足之处,今后,我将更加注意学习,努力克服工作中遇到的困难,进一步提高职业道德修养,提高业务学识和组织管理水平,为全县交通事业的发展作出新的贡献。 Word完美格式