资源描述
练习1
一、选择题(3′×10=30′)
1.下列性质中,平行四边形具有而非平行四边形不具有的是( ).
A.内角和为360° B.外角和为360° C.不确定性 D.对角相等
2.ABCD中,∠A=55°,则∠B、∠C的度数分别是( ).
A.135°,55° B.55°,135° C.125°,55° D.55°,125°
3.下列正确结论的个数是( ).
①平行四边形内角和为360°;②平行四边形对角线相等;
③平行四边形对角线互相平分;④平行四边形邻角互补.
A.1 B.2 C.3 D.4
4.平行四边形中一边的长为10cm,那么它的两条对角线的长度可能是( ).
A.4cm和6cm B.20cm和30cm C.6cm和8cm D.8cm和12cm
5.在ABCD中,AB+BC=11cm,∠B=30°,SABCD=15cm2,则AB与BC的值可能是( ).
A.5cm和6cm B.4cm和7cm C.3cm和8cm D.2cm和9cm
6.在下列定理中,没有逆定理的是( ).
A.有斜边和一直角边对应相等的两个直角三角形全等;
B.直角三角形两个锐角互余;
C.全等三角形对应角相等;
D.角平分线上的点到这个角两边的距离相等.
7.下列说法中正确的是( ).
A.每个命题都有逆命题 B.每个定理都有逆定理
C.真命题的逆命题是真命题 D.假命题的逆命题是假命题
8.一个三角形三个内角之比为1:2:1,其相对应三边之比为( ).
A.1:2:1 B.1::1 C.1:4:1 D.12:1:2
9.一个三角形的三条中位线把这个三角形分成面积相等的三角形有( )个.
A.2 B.3 C.4 D.5
10.如图所示,在△ABC中,M是BC的中点,AN平分∠BAC,BN⊥AN.若AB=14,AC=19,则MN的长为( ).
A.2 B.2.5 C.3 D.3.5
二、填空题(3′×10=30′)
11.用14cm长的一根铁丝围成一个平行四边形,短边与长边的比为3:4,短边的比为________,长边的比为________.
12.已知平行四边形的周长为20cm,一条对角线把它分成两个三角形,周长都是18cm,则这条对角线长是_________cm.
13.在ABCD中,AB的垂直平分线EF经过点D,在AB上的垂足为E,若ABCD的周长为38cm,△ABD的周长比ABCD的周长少10cm,则ABCD的一组邻边长分别为______.
14.在ABCD中,E是BC边上一点,且AB=BE,又AE的延长线交DC的延长线于点F.若∠F=65°,则ABCD的各内角度数分别为_________.
15.平行四边形两邻边的长分别为20cm,16cm,两条长边的距离是8cm,则两条短边的距离是_____cm.
16.如果一个命题的题设和结论分别是另一个命题的______和_______,那么这两个命题是互为逆命题.
17.命题“两直线平行,同旁内角互补”的逆命题是_________.
18.在直角三角形中,已知两边的长分别是4和3,则第三边的长是________.
19.直角三角形两直角边的长分别为8和10,则斜边上的高为________,斜边被高分成两部分的长分别是__________.
20.△ABC的两边分别为5,12,另一边c为奇数,且a+b+c是3的倍数,则c应为________,此三角形为________三角形.
三、解答题(6′×10=60′)
21.如右图所示,在ABCD中,BF⊥AD于F,BE⊥CD于E,若∠A=60°,AF=3cm,CE=2cm,求ABCD的周长.
22.如图所示,在ABCD中,E、F是对角线BD上的两点,且BE=DF.
求证:(1)AE=CF;(2)AE∥CF.
23.如图所示,ABCD的周长是10+6,AB的长是5,DE⊥AB于E,DF⊥CB交CB的延长线于点F,DE的长是3,求(1)∠C的大小;(2)DF的长.
24.如图所示,ABCD中,AQ、BN、CN、DQ分别是∠DAB、∠ABC、∠BCD、∠CDA的平分线,AQ与BN交于P,CN与DQ交于M,在不添加其它条件的情况下,试写出一个由上述条件推出的结论,并给出证明过程(要求:推理过程中要用到“平行四边形”和“角平分线”这两个条件).
25.已知△ABC的三边分别为a,b,c,a=n2-16,b=8n,c=n2+16(n>4).
求证:∠C=90°.
26.如图所示,在△ABC中,AC=8,BC=6,在△ABE中,DE⊥AB于D,DE=12,S△ABE=60,求∠C的度数.
27.已知三角形三条中位线的比为3:5:6,三角形的周长是112cm,求三条中位线的长.
28.如图所示,已知AB=CD,AN=ND,BM=CM,求证:∠1=∠2.
29.如图所示,△ABC的顶点A在直线MN上,△ABC绕点A旋转,BE⊥MN于E,CD⊥MN于D,F为BC中点,当MN经过△ABC的内部时,求证:(1)FE=FD;(2)当△ABC继续旋转,使MN不经过△ABC内部时,其他条件不变,上述结论是否成立呢?
30.如图所示,E是ABCD的边AB延长线上一点,DE交BC于F,求证:S△ABF =S△EFC.
答案:
一、1.D 2.C 3.C 4.B 5.A 6.C 7.A 8.B 9.C 10.C
二、11.3cm 4cm 12.8 13.9cm和10cm 14.50°,130°,50°,130°
15.10 16.结论 题设 17.同旁内角互补,两直线平行
18.5或 19. 20.13 直角
三、21.ABCD的周长为20cm 22.略
23.(1)∠C=45° (2)DF= 24.略
25.略 26.∠C=90° 27.三条中位线的长为:12cm;20cm;24cm
28.提示:连结BD,取BD的中点G,连结MG,NG
29.(1)略 (2)结论仍成立.提示:过F作FG⊥MN于G 30.略
练习2
一、填空题(每空2分,共28分)
1.已知在ABCD 中,AB=14,BC=16,则此平行四边形的周长为 .
A
B
C
D
O
2.要说明一个四边形是菱形,可以先说明这个四边形是 形,再说明 (只需填写一种方法)
3.如图,正方形ABCD的对线AC、BD相交于点O.
那么图中共有 个等腰直角三角形.
4.把“直角三角形、等腰三角形、等腰直角三角形”填入
下列相应的空格上.
(1)正方形可以由两个能够完全重合的 拼合而成; (第3题)
(2)菱形可以由两个能够完全重合的 拼合而成;
(3)矩形可以由两个能够完全重合的 拼合而成.
5.矩形的两条对角线的夹角为,较短的边长为12,则对角线长为 .
6.若直角梯形被一条对角线分成两个等腰直角三角形,那么这个梯形中除两个直角外,其余两个内角的度数分别为 和 .
7.平行四边形的周长为24,相邻两边长的比为3:1,那么这个平行四边形较短的边长为
.
8.根据图中所给的尺寸和比例,可知这个“十”字标志的周长为 .
A
B
C
D
O
1
1
(第8题) (第10题)
9.已知平行四边形的两条对角线互相垂直且长分别为12和6,那么这个平行四边形
的面积为 .
10.如图,是四边形ABCD的对称轴,如果AD∥BC,有下列结论: (1)AB∥CD;(2)AB=CD;(3)ABBC;(4)AO=OC.其中正确的结论是 .
(把你认为正确的结论的序号都填上)
二、选择题(每题3分,共24分)
11. 如果一个多边形的内角和等于一个三角形的外角和,那么这个多边形是( )
A、三角形 B、四边形 C、五边形 D、六边形
12.下列说法中,错误的是 ( )
A.平行四边形的对角线互相平分 B.对角线互相平分的四边形是平行四边形
C. 平行四边形的对角相等 D.对角线互相垂直的四边形是平行四边形
13.给出四个特征(1)两条对角线相等;(2)任一组对角互补;(3)任一组邻角互补;(4)是轴对称图形但不是中心对称图形,其中属于矩形和等腰梯形共同具有的特征的共有 ( )
A.1个 B.2个 C.3个 D.4个
14. 四边形ABCD中,AD//BC,那么 的值可能是( )
A、3:5:6:4 B、3:4:5:6 C、4:5:6:3 D、6:5:3:4
15.如图,直线∥,A是直线上的一个定点,线段BC在直线上移动,那么在移动过程中的面积 ( )
A.变大 B.变小 C.不变 D.无法确定
A
B
C
(第15题) (第16题) (第17题)
16.如图,矩形ABCD沿着AE折叠,使D点落在BC边上的F点处,如果,则 等于 ( )
A. B. C. D.
17.如图,在中,AB=AC=5,D是BC上的点,DE∥AB交AC于点E,DF∥AC交AB于点F,
那么四边形AFDE的周长是 ( )
A.5 B.10 C.15 D.20
18.已知四边形ABCD中,AC交BD于点O,如果只给条件“AB∥CD”,那么还不能判定四形
ABCD为平行四边形,给出以下四种说法:
(1)如果再加上条件“BC=AD”,那么四边形ABCD一定是平行四边形;
(2)如果再加上条件“”,那么四边形ABCD一定是平行四边形;
(3)如果再加上条件“AO=OC”,那么四边形ABCD一定是平行四边形;
(4)如果再加上条件“”,那么四边形ABCD一定是平行四边形
其中正确的说法是( )
A.(1)(2) B.(1)(3)(4) C.(2)(3) D.(2)(3)(4)
ABCD
三、解答题(第19题8分,第20~23题每题10分,共48分)
19.如图, 中,DB=CD,,AE⊥BD于E.
试求的度数.
(第19题)
ABCD
20.如图, 中,G是CD上一点,BG交AD延长线于E,AF=CG,.
(1)试说明DF=BG; (2)试求的度数.
(第20题)
21.工人师傅做铝合金窗框分下面三个步骤进行:
(1)先截出两对符合规格的铝合金窗料(如图①),使AB=CD,EF=GH;
(2)摆放成如图②的四边形,则这时窗框的形状是 形,根据的数学道理是:
;
(3)将直角尺靠紧窗框的一个角(如图③),调整窗框的边框,当直角尺的两条直角边与窗框无缝隙时(如图④),说明窗框合格,这时窗框是 形,根据的数学道理是:
.
(图①) (图②) (图③) (图④)
(第21题)
A
B
C
D
22.李大伯家有一口如图所示的四边形的池塘,在它的四个角上均有一棵大柳树,李大伯开挖池塘,使池塘面积扩大一倍,又想保持柳树不动,如果要求新池塘成平行四边形的形状.请问李大伯愿望能否实现?若能,请画出你的设计;若不能,请说明理由.
(第22题)
答案
1.60. 2.平行四边形;有一组邻边相等.
3.8. 提示:它们是
4.(1)等腰直角三角形; (2)等腰三角形; (3)直角三角形. 5.24. 6. 135; 45. 7.3.
8.4. 提示:如图所示,将“十”字标志的某些边
进行平移后可得到一个边长为1的正方
形,所以它的周长为4.
(第8题)
9. 36. 提示:菱形的面积等于菱形两条对角线乘积的一半.
10. (1)(2)(4). 提示:四边形ABCD是菱形.
11.B. 12.D. 13.C. 14.C.
15.C. 提示:因为的底边BC的长不变,BC边上的高等于直线之间的距离也不变,所以的面积不变.
16.A. 提示:由于 .
17.B. 提示:先说明DF=BF,DE=CE,所以四边形AFDE的周长=AF+DF+DE+AE=AF+BF+CE+AE=AB+AC.
18.C.
19.因为BD=CD,所以又因为四边形ABCD是平行四边形,所以AD∥BC ,所以因为.
20.(1)因为四边形ABCD是平行四边形,所以AB=DC,又AF=CG,所以AB-AF=DC-CG,即GD=BF,又 DG∥BF,所以四边形DFBG是平行四边形,所以DF=BG;
(2)因为四边形DFBG是平行四边形,所以DF∥GB,所以,同理可得,所以.
21.(1)平行四边,两组对边分别相等的四边形是平行四边形;
(2)矩,有一个是直角的平行四边形是矩形.
22.如图所示,连结对角线AC、BD,过A、B、C、D分别作BD、AC、BD、AC的平行线,且这些
平行线两两相交于E、F、G、H,四边形EFGH即为符合条件的平行四边形.
A
B
C
D
E
F
G
H
练习3
1、把正方形绕着点,按顺时针方向旋转得到正方形,边与交于点(如图).试问线段与线段相等吗?请先观察猜想,然后再证明你的猜想.
D
C
A
B
G
H
F
E
2、四边形ABCD、DEFG都是正方形,连接AE、CG.(1)求证:AE=CG;(2)观察图形,猜想AE与CG之间的位置关系,并证明你的猜想.
3、将平行四边形纸片ABCD按如图方式折叠,使点C与A重合,点D落到D′ 处,折痕为EF.
A
B
C
D
E
F
D′
(1)求证:△ABE≌△AD′F;(2)连接CF,判断四边形AECF是什么特殊四边形?证明你的结论.
挑战自我:
1、 (2010年眉山市).如图,每个小正方形的边长为1,A、B、C是小正方形的顶点,则∠ABC的度数为( )
A.90° B.60° C.45° D.30°
2、(2010福建龙岩中考)下列图形中,单独选用一种图形不能进行平面镶嵌的图形是( )
A. 正三角形 B. 正方形 C. 正五边形 D. 正六边形
3.(2010年北京顺义)若一个正多边形的一个内角是120°,则这个正多边形的边数是( )
A.9 B.8 C.6 D.4
4、(2010年福建福州中考)如图4,在□ABCD中,对角线AC、BD相交于点O,若AC=14,BD=8,AB=10,则△OAB的周长为 。
5、(2010年宁德市)如图,在□ABCD中,AE=EB,AF=2,则FC等于_____.
第5题图
F
A E B
C
D
6题
6、 (2010年滨州)如图,平行四边形ABCD中, ∠ABC=60°,E、F分别在CD、BC的延长线上,AE∥BD,EF⊥BC,DF=2,则EF的长为
A
B
C
D
7、 (2010年福建晋江)如图,请在下列四个关系中,选出两个恰当的关系作为条件,推出四边形是平行四边形,并予以证明.(写出一种即可)关系:①∥,②,③,④.
已知:在四边形中, , ;求证:四边形是平行四边形.
D
A
B
C
8、(2010年宁波市)如图1,有一张菱形纸片ABCD,,。
(1)请沿着AC剪一刀,把它分成两部分,把剪开的两部分拼成一个平行四
边形,在图2中用实数画出你所拼成的平行四边形;若沿着BD剪开,
请在图3中用实线画出拼成的平行四边形;并直接写出这两个平行四边
形的周长。
(图1)
(2)沿着一条直线剪开,拼成与上述两种都不全等的平行四边形,请在图4
中用实线画出拼成的平行四边形。(注:上述所画的平行四边形都不能与原菱形全等)
D
A
B
C
D
A
B
C
D
A
B
C
(图4)
(图3)
(图2)
周长为__________ 周长为__________
9、(2007天津市)在梯形ABCD中,AD//BC,对角线AC⊥BD,且,BD=12c m,求梯形中位线的长。
10、(2007·山东)如图,在周长为20cm的□ABCD中,AB≠AD,AC、BD相交于点O,OE⊥BD交AD于E,则△ABE的周长为( ) (A)4cm (B)6cm (C)8cm (D)10cm
11题
10题
11、(2006·山东)如图,在平行四边形ABCD中,AE⊥BC于E,AF⊥CD于F,∠EAF=45o,且AE+AF=,则平行四边形ABCD的周长是 .
直击中考:
1. (2011安徽)如图,D是△ABC内一点,BD⊥CD,AD=6,BD=4,CD=3,E、F、G、H分别是AB、AC、CD、BD的中点,则四边形EFGH的周长是( )【答案】D
A.7 B.9 C.10 D.11
2. (2011山东威海)在□ABCD中,点E为AD的中点,连接BE,交AC于点F,则AF:CF=( )
A.1:2 B.1:3 C.2:3 D.2:5 【答案】A
3. (2011四川重庆)下面图形都是由同样大小的平行四边形按一定的规律组成,其中,第①个图形一共有1个平行四边形,第②个图形一共有5个平行四边形,第③个图形一共有11个平行四边形,……,则第⑥个图形中平行四边形的个数为( ) 【答案】C
……
图① 图② 图③ 图④
A.55 B.42 C.41 D.29
4. (2011宁波市)一个多边形的内角和是720°,这个多边形的边数是( )【答案】C
A. 4 B. 5 C. 6 D. 7
5. (2011广东汕头)正八边形的每个内角为( )【答案】B
A.120° B.135° C.140° D.144°
6、(2011山东德州)图1是一个边长为1的等边三角形和一个菱形的组合图形,菱形边长为等边三角形边长的一半,以此为基本单位,可以拼成一个形状相同但尺寸更大的图形(如图2),依此规律继续拼下去(如图3),……,则第n个图形的周长是( )【答案】C
图1
图2
图3
……
(A) (B) (C) (D)
7. (2011山东泰安)如图,边长为6的大正方形中有两个小正方形,若两个小正方形的面积分别为S1,S2,则S1+S2的值为( )【答案】B
A.17 B.17 C.18 D.19
8. (2011山东泰安)如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )【答案】A
A.2 B. C. D.6
9. (2011四川重庆)如图,正方形ABCD中,AB=6,点E在边CD上,且CD=3DE.将△ADE沿AE对折至△AFE,延长EF交边BC于点G,连结AG、CF.下列结论:①△ABG≌△AFG;②BG=GC;③AG∥CF;④S△FGC=3.其中正确结论的个数是( ) 【答案】C
A.1 B.2 C.3 D.4
10. (2011浙江省嘉兴)如图,①②③④⑤五个平行四边形拼成一个含30°内角的菱形EFGH(不重叠无缝隙).若①②③④四个平行四边形面积的和为14cm2,四边形ABCD面积是11cm2,则①②③④四个平行四边形周长的总和为( )【答案】A
(A)48cm (B)36cm(C)24cm (D)18cm
(第10题)
①
②
③
④
⑤
11. ( 2011重庆江津)如图,四边形ABCD中,AC=a,BD=b,且AC⊥BD,顺次连接四边形ABCD各边中点,得到四边形A1B1C1D1,再顺次连接四边形A1B1C1D1各边中点,得到四边形A2B2C2D2……,如此进行下去,得到四边形AnBnCnDn.下列结论正确的有( ) 【答案】C
①四边形A2B2C2D2是矩形; ②四边形A4B4C4D4是菱形;
③四边形A5B5C5D5的周长; ④四边形AnBnCnDn的面积是
A.①② B.②③ C.②③④ D.①②③④
…
A1
A
A2
A3
B
B1
B2
B3
C
C2
C1
C3
D
D2
D1
D3
12. (2011湖北武汉市)如图,在菱形ABCD中,AB=BD,点E,F分别在AB,AD上,且AE=DF.连接BF与DE相交于点G,连接CG与BD相交于点H.下列结论:( ) 【答案】D
①△AED≌△DFB; ②S四边形 BCDG= CG2;③若AF=2DF,则BG=6GF.其中正确的结论
A.只有①②. B.只有①③.C.只有②③. D.①②③.
A
B
C
D
E
F
G
H
第12题图
13. (2011山东烟台)如图,三个边长均为2的正方形重叠在一起,O1、O2是其中两个正方形的中心,则阴影部分的面积是 . 【答案】2
14. (2011浙江绍兴) 取一张矩形纸片按照图1、图2中的方法对折,并沿图3中过矩形顶点的斜线(虚线)剪开,那剪下的①这部分展开,平铺在桌面上,若平铺的这个图形是正六边形,则这张矩形纸片的宽和长之比为 . 【答案】
15. (2011甘肃兰州)如图,依次连结第一个矩形各边的中点得到一个菱形,再依次连结菱形各边的中点得到第二个矩形,按照此方法继续下去。已知第一个矩形的面积为1,则第n个矩形的面积为 。【答案】
……
16、(2009年宜宾)如图,菱形ABCD的对角线长分别为,以菱形ABCD各边的中点为顶点作矩形A1B1C1D1,然后再以矩形A1B1C1D1的中点为顶点作菱形A2B2C2D2,……,如此下去,得到四边形A2009B2009C2009D2009的面积用含 的代数式表示为 .【答案】.
17、(2009 黑龙江大兴安岭)如图,边长为1的菱形中,.连结对角线,以为边作第二个菱形,使 ;连结,再以为边作第三个菱形,使 ;……,按此规律所作的第个菱形的边长为 .【答案】
18.(2011山东日照,16,4分)正方形ABCD的边长为4,M、N分别是BC、CD上的两个动点,且始终保持AM⊥MN.当BM= 时,四边形ABCN的面积最大. 【答案】2;
19、(2011四川宜宾)如图,平行四边形ABCD的对角线AC、BD交于点O,E、F在AC上,G、H在BD上,AF=CE,BH=DG.
求证:GF∥HE.
H
A
C
B
D
O
E
G
F
【答案】证明:∵平行四边形ABCD中,OA=OC,
由已知:AF=CE AF-OA=CE-OC ∴OF=OE 同理得:OG=OH
∴四边形EGFH是平行四边形 ∴GF∥HE
20、(2011四川成都10分) 如图,已知线段AB∥CD,AD与BC相交于点K,E是线段AD上一动点.
(1)若BK=KC,求的值;
(2)连接BE,若BE平分∠ABC,则当AE=AD时,猜想线段AB、BC、CD三者之间有怎样的等量关系?请写出你的结论并予以证明.再探究:当AE=AD (),而其余条件不变时,线段AB、BC、CD三者之间又有怎样的等量关系?请直接写出你的结论,不必证明.
【答案】解:(1)∵AB∥CD,BK=KC,∴==.
(2)如图所示,分别过C、D作BE∥CF∥DG分别交于AB的延长线于F、G三点,
∵BE∥DG,点E是AD的点,∴AB=BG;∵CD∥FG,CD∥AG,∴四边形CDGF是平行四边形,∴CD=FG;
∵∠ABE=∠EBC ,BE∥CF,∴∠EBC=∠BCF,∠ABE=∠BFC,∴BC=BF,
∴AB-CD=BG-FG=BF=BC,∴AB=BC+CD.
当AE=AD ()时,()AB=BC+CD.
21、(2011贵州安顺10分)如图,在△ABC中,∠ACB=90°,BC的垂直平分线DE交BC于D,交AB于E,F在DE上,且AF=CE=AE.
⑴说明四边形ACEF是平行四边形;
⑵当∠B满足什么条件时,四边形ACEF是菱形,并说明理由.
第25题图
【答案】(1)证明:由题意知∠FDC =∠DCA = 90°.∴EF∥CA ∴∠AEF =∠EAC
∵AF = CE = AE ∴∠F =∠AEF =∠EAC =∠ECA 又∵AE = EA
∴△AEC≌△EAF,∴EF = CA,∴四边形ACEF是平行四边形 .
(2)当∠B=30°时,四边形ACEF是菱形 .
理由是:∵∠B=30°,∠ACB=90°,∴AC=,∵DE垂直平分BC,∴ BE=CE
又∵AE=CE,∴CE=,∴AC=CE,∴四边形ACEF是菱形.
22、(2011山东滨州10分)如图,在△ABC中,点O是AC边上(端点除外)的一个动点,过点O作直线MN∥BC.设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,连接AE、AF。那么当点O运动到何下时,四边形AECF是矩形?并证明你的结论。
(第24题图)
【答案】当点O运动到AC的中点(或OA=OC)时,
四边形AECF是矩形………………2分
证明:∵CE平分∠BCA,∴∠1=∠2,………………3分
又∵MN∥BC, ∴∠1=∠3,
∴∠3=∠2,∴EO=CO. ………………5分
同理,FO=CO………………6分
∴EO=FO
又OA=OC, ∴四边形AECF是平行四边形………………7分
又∵∠1=∠2,∠4=∠5,∴∠1+∠5=∠2+∠4. ………………8分
又∵∠1+∠5+∠2+∠4=180°∴∠2+∠4=90°………………9分
∴四边形AECF是矩形………………10分
23、(2011湖北襄阳10分)如图9,点P是正方形ABCD边AB上一点(不与点A,B重合),连接PD并将线段PD绕点P顺时针方向旋转90°得到线段PE,PE交边BC于点F,连接BE,DF.
(1)求证:∠ADP=∠EPB;
(2)求∠CBE的度数;
(3)当的值等于多少时,△PFD∽△BFP?并说明理由.
图9
【答案】(1)证明:∵四边形ABCD是正方形
∴∠A=∠PBC=90°,AB=AD,∴∠ADP+∠APD=90° 1分
∵∠DPE=90° ∴∠APD+∠EPB=90°
∴∠ADP=∠EPB. 2分
(2)过点E作EG⊥AB交AB的延长线于点G,则∠EGP=∠A=90° 3分
又∵∠ADP=∠EPB,PD=PE,∴△PAD≌△EGP
∴EG=AP,AD=AB=PG,∴AP=EG=BG 4分
∴∠CBE=∠EBG=45°. 5分
(3)方法一:
当时,△PFE∽△BFP. 6分
∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF 7分
设AD=AB=a,则AP=PB=,∴BF=BP· 8分
∴,
∴ 9分
又∵∠DPF=∠PBF=90°,∴△ADP∽△BFP 10分
方法二:
假设△ADP∽△BFP,则. 6分
∵∠ADP=∠FPB,∠A=∠PBF,∴△ADP∽△BPF 7分
∴, 8分
∴, 9分
∴PB=AP, ∴当时,△PFE∽△BFP. 10分
24. (2011湖南永州10分)探究问题:
⑴方法感悟:如图①,在正方形ABCD中,点E,F分别为DC,BC边上的点,且满足∠EAF=45°,连接EF,求证DE+BF=EF.
感悟解题方法,并完成下列填空:
将△ADE绕点A顺时针旋转90°得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF=45° ∴∠2+∠3=∠BAD-∠EAF=90°-45°=45°.
∵∠1=∠2, ∴∠1+∠3=45°.
即∠GAF=∠_________.
又AG=AE,AF=AF
∴△GAF≌_______.
∴_________=EF,故DE+BF=EF.
(第25题)①
⑵方法迁移:
如图②,将沿斜边翻折得到△ADC,点E,F分别为DC,BC边上的点,且∠EAF=∠DAB.试猜想DE,BF,EF之间有何数量关系,并证明你的猜想.
(第25题)②
(第25题)②解得图
⑶问题拓展:
如图③,在四边形ABCD中,AB=AD,E,F分别为DC,BC上的点,满足,试猜想当∠B与∠D满足什么关系时,可使得DE+BF=EF.请直接写出你的猜想(不必说明理由).
(第25题)③
【答案】⑴EAF、△EAF、GF.
⑵DE+BF=EF,理由如下:
假设∠BAD的度数为,将△ADE绕点A顺时针旋转得到△ABG,此时AB与AD重合,由旋转可得:
AB=AD,BG=DE, ∠1=∠2,∠ABG=∠D=90°,
∴∠ABG+∠ABF=90°+90°=180°,
因此,点G,B,F在同一条直线上.
∵∠EAF= ∴∠2+∠3=∠BAD-∠EAF=
∵∠1=∠2, ∴∠1+∠3=.
即∠GAF=∠EAF又AG=AE,AF=AF
∴△GAF≌△EAF.∴GF=EF,
又∵GF=BG+BF=DE+BF ∴DE+BF=EF.
⑶当∠B与∠D互补时,可使得DE+BF=EF.
25、(2007南充)如图, 等腰梯形ABCD中,AB=15,AD=20,∠C=30º.点M、N同时以相同速度分别从点A、点D开始在AB、AD(包括端点)上运动.
(1)设ND的长为x,用x表示出点N到AB的距离,并写出x的取值范围.
(2)当五边形BCDNM面积最小时,请判断△AMN的形状.
A
D
C
B
M
N
D
C
B
M
N
A
P
解:(1)过点N作BA的垂线NP,交BA的延长线于点P. ………………(1分)
由已知,AM=x,AN=20-x.
∵ 四边形ABCD是等腰梯形,AB∥CD,∠D=∠C=30º,
∴ ∠PAN=∠D=30º.
在Rt△APN中,PN=ANsin∠PAN=(20-x),
即点N到AB的距离为(20-x). ………………………………(3分)
∵ 点N在AD上,0≤x≤20,点M在AB上,0≤x≤15,
∴ x的取值范
展开阅读全文