收藏 分销(赏)

数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc

上传人:快乐****生活 文档编号:4312496 上传时间:2024-09-05 格式:DOC 页数:8 大小:131.51KB
下载 相关 举报
数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc_第1页
第1页 / 共8页
数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc_第2页
第2页 / 共8页
数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc_第3页
第3页 / 共8页
数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc_第4页
第4页 / 共8页
数学:人教版九年级上-22.3-实际问题与一元二次方程(教案).doc_第5页
第5页 / 共8页
点击查看更多>>
资源描述

1、课题:22.3实际问题与一元二次方程一、教学目标1.会利用一元二次方程解决简单的图形问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决简单的图形问题.2.难点:根据图形问题列方程.三、教学过程(一)创设情境,导入新课师:前面我们学习了有关一元二次方程的知识,我们学习了什么是一元二次方程,学习了什么是一元二次方程的根,学习了如何解一元二次方程.现在,老师要同学们想这样一个问题:为什么要学习这些知识?学习这些知识的目的是什么?(稍停后再叫学生)生:(多让几名同学发表看法)师:和一元一次方程一样,一元二次方程也是解决实际问题的工具.学习一元二次方程不

2、是为了什么,而是为了解决实际问题.从这节课开始,我们来学习如何利用一元二次方程解决实际问题(板书课题:22.3实际问题与一元二次方程).师:下面我们来看一个例子.(二)尝试指导,讲授新课 (师出示下面的例题)例 扎西家有一个长方形院子,它的长比宽多3米,面积为54平方米,院子的长和宽各是多少米?师:大家把这个题目默读几遍.(生默读)师:题目要求院子的长和宽,我们设院子的长为x米,则院子的宽为多少米?生:(x-3)米(师板书:解:设院子的长为x米,则院子的宽为(x-3)米).师:读了题目,又设好了未知数,你能按题目的意思画一个图吗?大家试一试. (生画图,师巡视)师:我们一起来画图.扎西家有一个

3、长方形的院子(边讲边画一个长方形),现在设这个院子的长为x米(边讲边标:x米),则宽为(x-3)米(边讲边标:(x-3)米),院子的面积为54平方米(边讲边标:面积54平方米,画好的图如下所示).师:根据这个图,大家列一列方程. (生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:x(x-3)=54.(多让几名同学回答,然后师板书:x(x-3)=54)师:(指方程)列出的方程是一个一元二次方程,大家把它整理成一般形式.(生整理方程)师:整理后的方程是什么?生:x2-3x-54=0(师板书:整理,得x2-3x-54=0).师:(指x2-3x-54=0)大家用公式法解这个方程

4、. (生解方程,师巡视)师:方程的两个根x1等于什么?x2等于什么?生:x1=9,x2=-6(师板书:解方程,得x1=9,x2=-6,如有必要师可在黑板的其它地方板演解方程过程)师:(指准x(x-3)=54)这里的x表示什么?(稍停)表示院子的长,院子的长不能是负数,(指准x1=9,x2=-6)所以x2=-6不符合题目的意思,要舍去(板书:(不合题意,舍去).所以院子的长为9米(板书:答:院子的长为9米).师:院子的宽为多少米?生:宽为6米.(师板书:宽为6米)师:这道题目做完了,做了这道题目,谁来归纳一下怎么利用一元二次方程解决实际问题?(让生思考一会儿后再叫学生)生:(让几名同学回答)师:

5、(指准例题)利用一元二次方程解决实际问题,第一步要读题,反复地读题,有的时候还可以画一画图,通过读题画图弄清题目的意思;第二步设未知数;第三步根据题目的意思列出一元二次方程;第四步解一元二次方程,一元二次方程的根有两个,要根据题意来取舍解出的根,-6这个根不符合题目意思,要舍去;第五步答.师:利用一元二次方程解决实际问题就这么五步,实际上与利用一元一次方程解决实际问题的步骤是一样的.师:下面就请同学们自己来做两个练习.(三)试探练习,回授调节1.完成下面的解题过程: 一个直角三角形的两条直角边相差5cm,面积是7cm2,求两条直角边的长. 解:设一条直角边的长为 cm,则另一条直角边的长为 c

6、m. 根据题意列方程,得 . 整理,得 . 解方程,得 x1= ,x2= (不合题意,舍去). 答:一条直角边的长为 cm,则另一条直角边的长为 cm.2.一个菱形两条对角线长的和是10cm,面积是12cm2, (1)求菱形的两条对角线长; (2)求菱形的周长. (提示:菱形的面积=两条对角线积的一半)(四)归纳小结,布置作业师:(指例题)本节课我们学习了一个例题,大家再看一看这个例题,回顾一下利用一元二次方程解决问题有哪几个步骤.(作业:P48习题1(1)(2)2.3.)四、板书设计(略) 课题:22.3实际问题与一元二次方程(第2课时)一、教学目标1.会利用一元二次方程解决传播问题.2.培

7、养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决传播问题.2.难点:根据传播问题列方程.三、教学过程(一)基本训练,巩固旧知 1.填空: (1)有一人得了流感,他把流感传染给了10个人,共有 人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了10个人,经过两轮传染后,共有 人得流感. (2)有一人得了流感,他把流感传染给了x个人,共有 人得流感;第一轮传染后,所有得流感的人每人又把流感传染给了x个人,经过两轮传染后,共有 人得流感. ((1)题答案为11,121,(2)题答案为1+x,1+x+x(x+1),先让生自己做,然后师进行讲解)(二)创设

8、情境,导入新课师:和一元一次方程一样,利用一元二次方程可以解决实际问题,上节课我们做了一个例题,本节课我们再来看一个例题. (三)尝试指导,讲授新课 (师出示下面的例题)例 有一人得了流感,经过两轮传染后,共有121人得了流感,每轮传染中平均每一个人传染了几个人?师:大家把这个题目好好默读几遍.(生默读)师:谁能不看黑板说出题目的意思?生:(让几名同学说)师:这个题目怎么设?生:设每轮传染中平均一个人传染了x个人.(师板书:解:设每轮传染中平均一个人传染了x个人)师:(在黑板的其它地方板书:第一轮后)设平均一个人传染了x个人,那么第一轮后,共有多少人得了流感?生:1+x.(多让几名同学回答,然

9、后师板书:1+x)师:(在黑板的其它地方板书:第二轮后)那么第二轮后,共有多少人得了流感?(让生思考一会儿再叫学生)生:1+x+x(1+x).(多让几名同学回答,然后师板书:1+x+x(1+x))师:下面大家根据题目的意思列一列方程. (生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:1+x+x(1+x)=121(生答师板书:1+x+x(1+x)=121).师:(指方程)这是一个一元二次方程,怎么解这个方程?大家试着解一解.(生解方程)师:解出来的结果是什么?生:x1=10,x2=-12(生答师板书:x1=10,x2=-12).师:(指方程)解这个方程是有讲究的,很多同

10、学用公式法解,发现数字比较大,解起来比较麻烦.实际上我们可以用直接开平方法来解.怎么用直接平方法来解?(稍停)师:(指准1+x+x(1+x)=121)1+x+x(1+x)有公因式1+x,我们把1+x提取出来,得到(1+x)(1+x)(边讲边在其它地方板书:(1+x)(1+x)),可见方程可以化成(1+x)2=121(边讲边在其它地方板书:(1+x)2=121),用直接开平方法解这个方程,容易求出x1=10,x2=-12.师:方程中的x表示每个人传染的人数,所以x2=-12不符合题目的意思,要舍去(板书:(不合题意,舍去).师:最后还要答.(板书:答:每轮传染中平均每个人传染了10个人)师:下面

11、请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程: 有一个人知道某个消息,经过两轮传播后共有49人知道这个消息,每轮传播中平均一个人传播了几个人? 解:设每轮传播中平均一个人传播了x个人. 根据题意列方程,得 . 提公因式,得( )2= . 解方程,得 x1= ,x2= (不合题意,舍去). 答:每轮传播中平均一个人传播了 个人.3.一个人知道某个消息,设每轮传播中一个人传播了x个人,填空: (1)经过一轮传播后,共有 人知道这个消息; (2)经过两轮传播后,共有 人知道这个消息; (3)经过三轮传播后,共有 人知道这个消息; (4)请猜想,经过十轮传播后,共有 人知道这

12、个消息.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决传播问题.俗话说:一传十,十传百.这一传十,十传百是怎么么传的?(指准方程)用方程来表示就是(1+x)2=121.如果传了三轮,就成了(1+x)3;如果传了十轮,就成了(1+x)10.(作业:P48习题1(3)(4)4,4题中91改为81)四、板书设计(略) 课题:22.3实际问题与一元二次方程(第3课时)一、教学目标1.会利用一元二次方程解决增长问题.2.培养分析问题解决问题的能力,发展应用意识.二、教学重点和难点1.重点:利用一元二次方程解决增长问题.2.难点:根据增长问题列方程.三、教学过程(一)基本训练,巩固旧知1

13、.填空: (1)扎西家2006年收入是2万元,以后每年增长10,则扎西家2007年的收入是 万元,2008年的收入是 万元; (2)扎西家2006年收入是2万元,以后每年的增长率为x,则扎西家2007年的收入是 万元,2008年的收入是 万元. ((1)题答案为2.2,2.42,(2)题答案为2(1+x),2(x+1)2,先让生自己做,然后师进行讲解,并写出过程)(二)创设情境,导入新课师:上节课我们学习了利用一元二次方程解决传播问题.什么是传播问题?就是像“一传十,十传百”这样的问题.与传播问题类似的还有一种问题,叫什么问题?叫增长问题.师:下面我们就来看一个增长问题.(三)尝试指导,讲授新

14、课 (师出示下面的例题)例 扎西家2006年收入是2万元,2008年的收入是2.6万元,求扎西家收入的年平均增长率.师:大家把这个题目好好看几遍.(生默读)师:谁能不看黑板说出题目的意思?生:(让几名同学说)师:这个题目怎么设?生:设扎西家收入的年平均增长率为x.(师板书:解:设扎西家收入的年平均增长率为x)师:(指准板书)扎西家2006年收入是2万元(板书:2006年 2万元),年平均增长率为x,那么,2007年扎西家的收入是多少万元?(板书:2007年)生:2(1+x).(生答师板书:2(1+x)万元)师:(指准板书)2007年收入是2(1+x)万元,年平均增长率x,那么,2008年扎西家

15、的收入是多少万元?(板书:2008年)生:2(1+x)2.(生答师板书:2(1+x)2万元)师:知道了扎西家2008年的收入可以表示成2(1+x)2,下面大家根据题目的意思列一列方程. (生列方程,师巡视)师:(板书:根据题意列方程,得)列出的方程是什么?生:2(1+x)22.6(生答师书:2(1+x)22.6).师:接下来解方程(板书:解方程,得)用什么方法解这个方程比较简单?(稍停)用直接开平方法. (以下师在其它地方板书解方程过程)师:得到x10.14,x2-2.14(生答师板书:x10.14,x2-2.14).师:扎西家的收入是增加的,所以增长率应该是正数,x2-2.14不符合题目的意

16、思,要舍去(板书:(不合题意,舍去).师:扎西家收入的年平均增长率约为0.14,也就是14(板书:答:扎西家收入的年平均增长率约为14).师:下面请大家自己来做一个练习.(三)试探练习,回授调节2.完成下面的解题过程: 某公司今年利润预计是300万元,后年利润要达到450万元,该公司利润的年平均增长率是多少? 解:设该公司利润的年平均增长率是x. 根据题意列方程,得 . 解方程,得 x1 ,x2 (不合题意,舍去). 答:该公司利润的年平均增长率是 %.3.某公司今年利润预计是300万元,设该公司利润的年平均增长率是x,填空: (1)明年该公司年利润要达到 万元; (2)后年该公司年利润要达到 万元; (3)第三年该公司年利润要达到 万元; (4)第十年该公司年利润要达到 万元.(五)归纳小结,布置作业师:本节课我们学习了利用一元二次方程解决增长问题,增长问题在现在生活中很常见,它与传播问题类似,希望大家掌握解决这两个问题的方法.(作业:P48习题1(5)(6)7)

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服