资源描述
计算方法(B)实验报告
姓名:
学号:
学院:
专业:
实验一 三对角方程组的求解
一、 实验目的
掌握三对角方程组求解的方法。
二、 实验内容
求三对角方程组的解,其中:
,
三、 算法组织
设系数矩阵为三对角矩阵
则方程组称为三对角方程组。
设矩阵T非奇异,T可分解为T=LU,其中L为下三角矩阵,U为单位上三角矩阵,记
可先依次求出中的元素后,令,先求解下三角方程组得出y,再求解上三角方程组。
追赶法的算法组织如下:
1.输入三对角矩阵和右端向量;
2.将压缩为四个一维数组,是T的三对角线性方程组的三个对角,是右端向量。将分解矩阵压缩为三个一维数组。
3.对做分解(也可以用分解)导出追赶法的计算步骤如下:
4.回代求解
5. 停止,输出结果。
四、 MATLAB 程序
MATLAB程序见附件1.
五、 结果及分析
实验结果为:
实验二 Jacobi迭代和Gauss-Seidel迭代解线性方程组
一、 实验目的
掌握Jacobi迭代和Gauss-Seidel迭代解线性方程组的方法。
二、 实验内容
用Jacobi迭代和Gauss-Seidel迭代解电路电流方程组,使各部分电流误差均小于。
三、 算法组织
形如的方程组,用Jacobi迭代求解,算法组织如下:
1. 将系数矩阵分解成对角元、下三角部分元和上三角部分元,于是.
2. 由。
3. 从而构成形如迭代格式:
其中
4. 选取初始向量进行迭代计算。
5. 当迭代后的解满足题中的约束条件时迭代停止。
形如的方程组,用Gauss—Seidel迭代求解,算法组织如下:
1. 将系数矩阵分解成对角元、下三角部分元和上三角部分元,于是.
2. 由。
3. 从而构成形如迭代格式:
其中
4. 选取初始向量进行迭代计算。
5. 当迭代后的解满足题中的约束条件时迭代停止。
四、 MATLAB 程序
MATLAB程序见附件2,其中1为Jacobi迭代,2为Gauss—Seidel迭代。
五、 结果及分析
Jacobi迭代结果:
方程组的解为
迭代次数
Gauss—Seidel迭代结果:
方程组的解为
迭代次数
由以上结果可知,达到相同的计算精度,Gauss—Seidel迭代比Jacobi迭代的速度快,Gauss—Seidel迭代比Jacobi迭代次数少。
实验三 多项式插值及误差计算
一、实验目的
掌握多项式插值的原理和基本方法。
二、实验内容
已知,对
a. 计算函数在点处的值;
b. 求插值数据点的插值多项式和三次样条插值多项式;
c. 对,计算和相应的函数值;
d. 计算,,解释所得到结果。
三、 算法组织
(一)本题第一问是简单的用matlab程序可以计算,算法很简单。
(二) 本题在算法上第二问中的Newton插值多项式和三次样条插值多项式。计算两种插值多项式的算法如下:
1. 求Newton插值多项式,算法组织如下:
Newton插值多项式的表达式如下:
其中每一项的系数ci的表达式如下:
根据上述公式,为了得到系数需计算:
1) 一阶差商
2) 二阶差商
… … … …
3) n阶差商
4) n+1阶差商
2. 求三次样条插值多项式,算法组织如下:
所谓三次样条插值多项式是一种对区间进行分段的分段函数,然后在每一段上进行分析,即它在节点分成的每个小区间上是3次多项式,其在此区间上的表达式如下:
因此,只要确定了的值,就确定了整个表达式,的计算方法如下:
令:
则满足如下n-1个方程:
方程中有n+1个未知量,则令和分别为零,则由上面的方程组可得到的值,可得到整个区间上的三次样条插值多项式。
(三) 第三问和第四问的算法与第二问的算法类似,不再赘述。
四、 MATLAB 程序
MATLAB程序见附件3。
五、 结果及分析
第一问
当n=5时,各节点及f(x)值为:
x(0)=-1,y(0)=3.846154e-02
x(1)=-6.000000e-01,y(1)=1.000000e-01
x(2)=-2.000000e-01,y(2)=5.000000e-01
x(3)=2.000000e-01,y(3)=5.000000e-01
x(4)=6.000000e-01,y(4)=1.000000e-01
x(5)=1,y(5)=3.846154e-02
当n=10时,各节点及f(x)值为:
x(0)=-1,y(0)=3.846154e-02
x(1)=-8.000000e-01,y(1)=5.882353e-02
x(2)=-6.000000e-01,y(2)=1.000000e-01
x(3)=-4.000000e-01,y(3)=2.000000e-01
x(4)=-2.000000e-01,y(4)=5.000000e-01
x(5)=0,y(5)=1
x(6)=2.000000e-01,y(6)=5.000000e-01
x(7)=4.000000e-01,y(7)=2.000000e-01
x(8)=6.000000e-01,y(8)=1.000000e-01
x(9)=8.000000e-01,y(9)=5.882353e-02
x(10)=1,y(10)=3.846154e-02
当n=20时,各节点及f(x)值为:
x(0)=-1,y(0)=3.846154e-02
x(1)=-9.000000e-01,y(1)=4.705882e-02
x(2)=-8.000000e-01,y(2)=5.882353e-02
x(3)=-7.000000e-01,y(3)=7.547170e-02
x(4)=-6.000000e-01,y(4)=1.000000e-01
x(5)=-5.000000e-01,y(5)=1.379310e-01
x(6)=-4.000000e-01,y(6)=2.000000e-01
x(7)=-3.000000e-01,y(7)=3.076923e-01
x(8)=-2.000000e-01,y(8)=5.000000e-01
x(9)=-1.000000e-01,y(9)=8.000000e-01
x(10)=0,y(10)=1
x(11)=1.000000e-01,y(11)=8.000000e-01
x(12)=2.000000e-01,y(12)=5.000000e-01
x(13)=3.000000e-01,y(13)=3.076923e-01
x(14)=4.000000e-01,y(14)=2.000000e-01
x(15)=5.000000e-01,y(15)=1.379310e-01
x(16)=6.000000e-01,y(16)=1.000000e-01
x(17)=7.000000e-01,y(17)=7.547170e-02
x(18)=8.000000e-01,y(18)=5.882353e-02
x(19)=9.000000e-01,y(19)=4.705882e-02
x(20)=1,y(20)=3.846154e-02
第二问牛顿插值算法当n=5时
Newton插值多项式的系数分别为:
c[0]=3.846154e-02
c[1]=1.538462e-01
c[2]=1.057692e+00
c[3]=-1.923077e+00
c[4]=1.201923e+00
c[5]=-5.551115e-16
当n=10时
Newton插值多项式的系数分别为:
c[0]=3.846154e-02
c[1]=1.018100e-01
c[2]=2.601810e-01
c[3]=7.918552e-01
c[4]=2.686652e+00
c[5]=-6.363122e+00
c[6]=-1.767534e+01
c[7]=8.484163e+01
c[8]=-1.679157e+02
c[9]=2.209417e+02
c[10]=-2.209417e+02
当n=20时
Newton插值多项式的系数分别为:
c[0]=3.846154e-02
c[1]=8.597285e-02
c[2]=1.583710e-01
c[3]=2.860070e-01
c[4]=5.335952e-01
c[5]=1.037751e+00
c[6]=2.001902e+00
c[7]=2.796775e+00
c[8]=-7.543931e+00
c[9]=-1.011991e+02
c[10]=-6.439941e+01
c[11]=2.152780e+03
c[12]=-7.267934e+03
c[13]=1.139374e+04
c[14]=-3.538429e+03
c[15]=-2.830744e+04
c[16]=8.669152e+04
c[17]=-1.592293e+05
c[18]=2.237536e+05
c[19]=-2.601786e+05
c[20]=2.601786e+05
三次样条插值算法当n=5时,取边界条件为自然样条的三次样条插值多项式的系数分别为:
m =
0
4.1296
-3.8259
-3.8259
4.1296
0
当n=10时,取边界条件为自然样条的三次样条插值多项式的系数分别为:
m =
0
0.4101
1.4820
2.4856
18.5755
-46.7878
18.5755
2.4856
1.4820
0.4101
0
当n=20时,取边界条件为自然样条的三次样条插值多项式的系数分别为:
m =
0
0.3615
0.4543
0.7514
1.2681
2.2177
4.3438
7.7810
15.3016
-4.3719
-57.8141
-4.3719
15.3016
7.7810
4.3438
2.2177
1.2681
0.7514
0.4543
0.3615
0
第三问
当n=5时,给定点xi的f(xi),N(xi),S(xi),分别为:
x(1)=-9.800000e-01, f=3.998401e-02, N=1.369250e-02, S=3.604615e-02
x(2)=-9.600000e-01, f=4.159734e-02, N=-6.920000e-03, S=3.371336e-02
x(3)=-9.400000e-01, f=4.330879e-02, N=-2.359981e-02, S=3.154575e-02
x(4)=-9.200000e-01, f=4.512635e-02, N=-3.656615e-02, S=2.962591e-02
x(5)=-9.000000e-01, f=4.705882e-02, N=-4.603365e-02, S=2.803644e-02
x(6)=-8.800000e-01, f=4.911591e-02, N=-5.221231e-02, S=2.685992e-02
x(7)=-8.600000e-01, f=5.130836e-02, N=-5.530750e-02, S=2.617895e-02
x(8)=-8.400000e-01, f=5.364807e-02, N=-5.552000e-02, S=2.607611e-02
x(9)=-8.200000e-01, f=5.614823e-02, N=-5.304596e-02, S=2.663401e-02
x(10)=-8.000000e-01, f=5.882353e-02, N=-4.807692e-02, S=2.793522e-02
x(11)=-7.800000e-01, f=6.169031e-02, N=-4.079981e-02, S=3.006235e-02
x(12)=-7.600000e-01, f=6.476684e-02, N=-3.139692e-02, S=3.309798e-02
x(13)=-7.400000e-01, f=6.807352e-02, N=-2.004596e-02, S=3.712470e-02
x(14)=-7.200000e-01, f=7.163324e-02, N=-6.920000e-03, S=4.222510e-02
x(15)=-7.000000e-01, f=7.547170e-02, N=7.812500e-03, S=4.848178e-02
x(16)=-6.800000e-01, f=7.961783e-02, N=2.398769e-02, S=5.597733e-02
x(17)=-6.600000e-01, f=8.410429e-02, N=4.144635e-02, S=6.479433e-02
x(18)=-6.400000e-01, f=8.896797e-02, N=6.003385e-02, S=7.501538e-02
x(19)=-6.200000e-01, f=9.425071e-02, N=7.960019e-02, S=8.672308e-02
x(20)=-6.000000e-01, f=1.000000e-01, N=1.000000e-01, S=1.000000e-01
x(21)=-5.800000e-01, f=1.062699e-01, N=1.210925e-01, S=1.148885e-01
x(22)=-5.600000e-01, f=1.131222e-01, N=1.427415e-01, S=1.312696e-01
x(23)=-5.400000e-01, f=1.206273e-01, N=1.648156e-01, S=1.489844e-01
x(24)=-5.200000e-01, f=1.288660e-01, N=1.871877e-01, S=1.678737e-01
x(25)=-5.000000e-01, f=1.379310e-01, N=2.097356e-01, S=1.877783e-01
x(26)=-4.800000e-01, f=1.479290e-01, N=2.323415e-01, S=2.085393e-01
x(27)=-4.600000e-01, f=1.589825e-01, N=2.548925e-01, S=2.299974e-01
x(28)=-4.400000e-01, f=1.712329e-01, N=2.772800e-01, S=2.519935e-01
x(29)=-4.200000e-01, f=1.848429e-01, N=2.994002e-01, S=2.743686e-01
x(30)=-4.000000e-01, f=2.000000e-01, N=3.211538e-01, S=2.969636e-01
x(31)=-3.800000e-01, f=2.169197e-01, N=3.424463e-01, S=3.196192e-01
x(32)=-3.600000e-01, f=2.358491e-01, N=3.631877e-01, S=3.421765e-01
x(33)=-3.400000e-01, f=2.570694e-01, N=3.832925e-01, S=3.644763e-01
x(34)=-3.200000e-01, f=2.808989e-01, N=4.026800e-01, S=3.863595e-01
x(35)=-3.000000e-01, f=3.076923e-01, N=4.212740e-01, S=4.076670e-01
x(36)=-2.800000e-01, f=3.378378e-01, N=4.390031e-01, S=4.282397e-01
x(37)=-2.600000e-01, f=3.717472e-01, N=4.558002e-01, S=4.479184e-01
x(38)=-2.400000e-01, f=4.098361e-01, N=4.716031e-01, S=4.665441e-01
x(39)=-2.200000e-01, f=4.524887e-01, N=4.863540e-01, S=4.839577e-01
x(40)=-2.000000e-01, f=5.000000e-01, N=5.000000e-01, S=5.000000e-01
x(41)=-1.800000e-01, f=5.524862e-01, N=5.124925e-01, S=5.145385e-01
x(42)=-1.600000e-01, f=6.097561e-01, N=5.237877e-01, S=5.275466e-01
x(43)=-1.400000e-01, f=6.711409e-01, N=5.338463e-01, S=5.390243e-01
x(44)=-1.200000e-01, f=7.352941e-01, N=5.426338e-01, S=5.489717e-01
x(45)=-1.000000e-01, f=8.000000e-01, N=5.501202e-01, S=5.573887e-01
x(46)=-8.000000e-02, f=8.620690e-01, N=5.562800e-01, S=5.642753e-01
x(47)=-6.000000e-02, f=9.174312e-01, N=5.610925e-01, S=5.696316e-01
x(48)=-4.000000e-02, f=9.615385e-01, N=5.645415e-01, S=5.734575e-01
x(49)=-2.000000e-02, f=9.900990e-01, N=5.666156e-01, S=5.757530e-01
x(50)=0, f=1, N=5.673077e-01, S=5.765182e-01
x(51)=2.000000e-02, f=9.900990e-01, N=5.666156e-01, S=5.757530e-01
x(52)=4.000000e-02, f=9.615385e-01, N=5.645415e-01, S=5.734575e-01
x(53)=6.000000e-02, f=9.174312e-01, N=5.610925e-01, S=5.696316e-01
x(54)=8.000000e-02, f=8.620690e-01, N=5.562800e-01, S=5.642753e-01
x(55)=1.000000e-01, f=8.000000e-01, N=5.501202e-01, S=5.573887e-01
x(56)=1.200000e-01, f=7.352941e-01, N=5.426338e-01, S=5.489717e-01
x(57)=1.400000e-01, f=6.711409e-01, N=5.338463e-01, S=5.390243e-01
x(58)=1.600000e-01, f=6.097561e-01, N=5.237877e-01, S=5.275466e-01
x(59)=1.800000e-01, f=5.524862e-01, N=5.124925e-01, S=5.145385e-01
x(60)=2.000000e-01, f=5.000000e-01, N=5.000000e-01, S=5.000000e-01
x(61)=2.200000e-01, f=4.524887e-01, N=4.863540e-01, S=4.839577e-01
x(62)=2.400000e-01, f=4.098361e-01, N=4.716031e-01, S=4.665441e-01
x(63)=2.600000e-01, f=3.717472e-01, N=4.558002e-01, S=4.479184e-01
x(64)=2.800000e-01, f=3.378378e-01, N=4.390031e-01, S=4.282397e-01
x(65)=3.000000e-01, f=3.076923e-01, N=4.212740e-01, S=4.076670e-01
x(66)=3.200000e-01, f=2.808989e-01, N=4.026800e-01, S=3.863595e-01
x(67)=3.400000e-01, f=2.570694e-01, N=3.832925e-01, S=3.644763e-01
x(68)=3.600000e-01, f=2.358491e-01, N=3.631877e-01, S=3.421765e-01
x(69)=3.800000e-01, f=2.169197e-01, N=3.424463e-01, S=3.196192e-01
x(70)=4.000000e-01, f=2.000000e-01, N=3.211538e-01, S=2.969636e-01
x(71)=4.200000e-01, f=1.848429e-01, N=2.994002e-01, S=2.743686e-01
x(72)=4.400000e-01, f=1.712329e-01, N=2.772800e-01, S=2.519935e-01
x(73)=4.600000e-01, f=1.589825e-01, N=2.548925e-01, S=2.299974e-01
x(74)=4.800000e-01, f=1.479290e-01, N=2.323415e-01, S=2.085393e-01
x(75)=5.000000e-01, f=1.379310e-01, N=2.097356e-01, S=1.877783e-01
x(76)=5.200000e-01, f=1.288660e-01, N=1.871877e-01, S=1.678737e-01
x(77)=5.400000e-01, f=1.206273e-01, N=1.648156e-01, S=1.489844e-01
x(78)=5.600000e-01, f=1.131222e-01, N=1.427415e-01, S=1.312696e-01
x(79)=5.800000e-01, f=1.062699e-01, N=1.210925e-01, S=1.148885e-01
x(80)=6.000000e-01, f=1.000000e-01, N=1.000000e-01, S=1.000000e-01
x(81)=6.200000e-01, f=9.425071e-02, N=7.960019e-02, S=8.672308e-02
x(82)=6.400000e-01, f=8.896797e-02, N=6.003385e-02, S=7.501538e-02
x(83)=6.600000e-01, f=8.410429e-02, N=4.144635e-02, S=6.479433e-02
x(84)=6.800000e-01, f=7.961783e-02, N=2.398769e-02, S=5.597733e-02
x(85)=7.000000e-01, f=7.547170e-02, N=7.812500e-03, S=4.848178e-02
x(86)=7.200000e-01, f=7.163324e-02, N=-6.920000e-03, S=4.222510e-02
x(87)=7.400000e-01, f=6.807352e-02, N=-2.004596e-02, S=3.712470e-02
x(88)=7.600000e-01, f=6.476684e-02, N=-3.139692e-02, S=3.309798e-02
x(89)=7.800000e-01, f=6.169031e-02, N=-4.079981e-02, S=3.006235e-02
x(90)=8.000000e-01, f=5.882353e-02, N=-4.807692e-02, S=2.793522e-02
x(91)=8.200000e-01, f=5.614823e-02, N=-5.304596e-02, S=2.663401e-02
x(92)=8.400000e-01, f=5.364807e-02, N=-5.552000e-02, S=2.607611e-02
x(93)=8.600000e-01, f=5.130836e-02, N=-5.530750e-02, S=2.617895e-02
x(94)=8.800000e-01, f=4.911591e-02, N=-5.221231e-02, S=2.685992e-02
x(95)=9.000000e-01, f=4.705882e-02, N=-4.603365e-02, S=2.803644e-02
x(96)=9.200000e-01, f=4.512635e-02, N=-3.656615e-02, S=2.962591e-02
x(97)=9.400000e-01, f=4.330879e-02, N=-2.359981e-02, S=3.154575e-02
x(98)=9.600000e-01, f=4.159734e-02, N=-6.920000e-03, S=3.371336e-02
x(99)=9.800000e-01, f=3.998401e-02, N=1.369250e-02, S=3.604615e-02
当n=10时,给定点xi的f(xi),N(xi),S(xi),分别为:
x(1)=-9.800000e-01, f=3.998401e-02, N=1.230317e+00, S=4.022710e-02
x(2)=-9.600000e-01, f=4.159734e-02, N=1.804385e+00, S=4.200907e-02
x(3)=-9.400000e-01, f=4.330879e-02, N=1.958952e+00, S=4.382384e-02
x(4)=-9.200000e-01, f=4.512635e-02, N=1.845845e+00, S=4.568782e-02
x(5)=-9.000000e-01, f=4.705882e-02, N=1.578721e+00, S=4.761740e-02
x(6)=-8.800000e-01, f=4.911591e-02, N=1.240213e+00, S=4.962900e-02
x(7)=-8.600000e-01, f=5.130836e-02, N=8.880811e-01, S=5.173901e-02
x(8)=-8.400000e-01, f=5.364807e-02, N=5.604444e-01, S=5.396383e-02
x(9)=-8.200000e-01, f=5.614823e-02, N=2.802176e-01, S=5.631987e-02
x(10)=-8.000000e-01, f=5.882353e-02, N=5.882353e-02, S=5.882353e-02
x(11)=-7.800000e-01, f=6.169031e-02, N=-1.007243e-01, S=6.149562e-02
x(12)=-7.600000e-01, f=6.476684e-02, N=-2.012964e-01, S=6.437461e-02
x(13)=-7.400000e-01, f=6.807352e-02, N=-2.496082e-01, S=6.750337e-02
x(14)=-7.200000e-01, f=7.163324e-02, N=-2.546027e-01, S=7.092479e-02
x(15)=-7.000000e-01, f=7.547170e-02, N=-2.261963e-01, S=7.468173e-02
x(16)=-6.800000e-01, f=7.961783e-02, N=-1.743355e-01, S=7.881707e-02
x(17)=-6.600000e-01, f=8.410429e-02, N=-1.083152e-01, S=8.337369e-02
x(18)=-6.400000e-01, f=8.896797e-02, N=-3.631685e-02, S=8.839447e-02
x(19)=-6.200000e-01, f=9.425071e-02, N=3.487332e-02, S=9.392228e-02
x(20)=-6.000000e-01, f=1.000000e-01, N=1.000000e-01, S=1.000000e-01
x(21)=-5.800000e-01, f=1.062699e-01, N=1.553586e-01, S=1.066700e-01
x(22)=-5.600000e-01, f=1.131222e-01, N=1.987262e-01, S=1.139730e-01
x(23)=-5.400000e-01, f=1.206273e-01, N=2.292273e-01, S=1.219491e-01
x(24)=-5.200000e-01, f=1.288660e-01, N=2.471535e-01, S=1.306384e-01
x(25)=-5.000000e-01, f=1.379310e-01, N=2.537555e-01, S=1.400810e-01
x(26)=-4.800000e-01, f=1.479290e-01, N=2.510206e-01, S=1.503172e-01
x(27)=-4.600000e-01, f=1.589825e-01, N=2.414494e-01, S=1.613870e-01
x(28)=-4.400000e-01, f=1.712329e-01, N=2.278397e-01, S=1.733307e-01
x(29)=-4.200000e-01, f=1.848429e-01, N=2.130858e-01, S=1.861883e-01
x(30)=-4.000000e-01, f=2.000000e-01, N=2.000000e-01, S=2.000000e-01
x(31)=-3.800000e-01, f=2.169197e-01, N=1.911589e-01, S=2.149065e-01
x(32)=-3.600000e-01, f=2.358491e-01, N=1.887784e-01, S=2.314509e-01
x(33)=-3.400000e-01, f=2.570694e-01, N=1.946178e-01, S=2.502767e-01
x(34)=-3.200000e-01, f=2.808989e-01, N=2.099145e-01, S=2.720276e-01
x(35)=-3.000000e-01, f=3.076923e-01, N=2.353466e-01, S=2.973471e-01
x(36)=-2.800000e-01, f=3.378378e-01, N=2.710241e-01, S=3.268788e-01
x(37)=-2.600000e-01, f=3.717472e-01, N=3.165048e-01, S=3.612664e-01
x(38)=-2.400000e-01, f=4.098361e-01, N=3.708328e-01, S=4.011534e-01
x(39)=-2.200000e-01, f=4.524887e-01, N=4.325960e-01, S=4.471834e-01
x(40)=-2.000000e-01, f=5.000000e-01, N=5.000000e-01, S=5.000000e-01
x(41)=-1.800000e-01, f=5.524862e-01, N=5.709536e-01, S=5.597038e-01
x(42)=-1.600000e-01, f=6.097561e-01, N=6.431626e-01, S=6.242233e-01
x(43)=-1.400000e-01, f=6.711409e-01, N=7.142283e-01, S=6.909440e-01
x(44)=-1.200000e-01, f=7.352941e-01, N=7.817471e-01, S=7.572512e-01
x(45)=-1.000000e-01, f=8.000000e-01, N=8.434074e-01, S=8.205306e-01
x(46)=-8.000000e-02, f=8.620690e-01, N=8.970803e-01, S=8.781675e-01
x(47)=-6.000000e-02, f=9.174312e-01, N=9.409023e-01, S=9.275474e-01
x(48)=-4.000000e-02, f=9.615385e-01, N=9.733459e-01, S=9.660558e-01
x(49)=-2.000000e-02, f=9.900990e-01, N=9.932776e-01, S=9.910782e-01
x(50)=0, f=1, N=1.000000e+00, S=1
x(51)=2.000000e-02, f=9.
展开阅读全文