收藏 分销(赏)

北师大版八年级上册数学【教案】三角形外角定理.doc

上传人:丰**** 文档编号:4305876 上传时间:2024-09-05 格式:DOC 页数:6 大小:838.01KB
下载 相关 举报
北师大版八年级上册数学【教案】三角形外角定理.doc_第1页
第1页 / 共6页
北师大版八年级上册数学【教案】三角形外角定理.doc_第2页
第2页 / 共6页
北师大版八年级上册数学【教案】三角形外角定理.doc_第3页
第3页 / 共6页
北师大版八年级上册数学【教案】三角形外角定理.doc_第4页
第4页 / 共6页
北师大版八年级上册数学【教案】三角形外角定理.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、最新北师大版八年级数学精品资料设计7.5.2 三角形外角定理一、学生知识状况分析 学生技能基础:学生在前面的几何学习中,已经学习过平行线的判定定理与平行线的性质定理以及它们的严格证明,学习了三角形内角和定理的证明以及相关应用,有相关知识的基础,并具有一定的逻辑思维能力和严谨推理习惯,为今天的学习奠定了良好的基础 活动经验基础:本节课主要采取的活动形式是学生非常熟悉的自主探究与合作交流相结合、实践和理性证明相结合的学习方式,学生具有较熟悉的活动经验 二、教学任务分析在前面的学习中,学生对于平行线相关知识以及三角形内角和定理的灵活运用已经有了深入的了解,为今天的学习奠定了知识基础,并且他们已经具有

2、初步的几何意识,形成了一定的逻辑思维能力和推理能力,本节课安排关注三角形的外角旨在利用已经学习过的知识来推导出新的定理以及运用新的定理解决相关问题。为此,本节课的教学目标是: 1.掌握三角形外角的两条性质; 2.进一步熟悉和掌握证明的步骤、格式、方法、技巧 3.灵活运用三角形的外角和两条性质解决相关问题。 4.进一步培养学生的逻辑思维能力和推理能力,培养学生的几何意识。 5.通过在数学活动中进行教学,使学生能自主地“做数学”,特别是培养有条理的想象和探索能力,从而做到强化基础,激发学习兴趣 三、教学过程分析本节课的设计分为四个环节:情境引入探索新知反馈练习课堂反思与小结第一环节:情境引入活动内

3、容: 在证明三角形内角和定理时,用到了把ABC的一边BC延长得到ACD,这个角叫做什么角呢?下面我们就给这种角命名,并且来研究它的性质活动目的: 引出三角形外角的概念,并对其进行研究,激发学生学习兴趣。注意事项: 教师应在学生充分展示自己的意见之后,有意识地引导学生从三角形的外角的角度进行思考。第二环节:探索新知活动内容: 三角形的外角定义:三角形的一边与另一边的延长线所组成的角,叫做三角形的外角, 结合图形指明外角的特征有三:(1)顶点在三角形的一个顶点上(2)一条边是三角形的一边(3)另一条边是三角形某条边的延长线 两个推论及其应用由学生探讨三角形外角的性质:问题1:如图,ABC中,A=7

4、0,B=60,ACD是ABC的一个外角,能由A、B求出ACD吗?如果能,ACD与A、B有什么关系?问题2:任意一个ABC的一个外角ACD与A、B的大小会有什么关系呢?由学生归纳得出:推论1: 三角形的一个外角等于和它不相邻的两个内角的和推论 2:三角形的一个外角大于任何一个和它不相邻的内角例1、已知:BAF,CBD,ACE是ABC的三个外角求证:BAF+CBD+ACE=360分析:把每个外角表示为与之不相邻的两个内角之和即得证证明:(略)例2、已知:D是AB上一点,E是AC上一点,BE、CD相交于F,A=62,ACD=35,ABE=20求:(1)BDC度数;(2)BFD度数解:(略)活动目的:

5、 通过三角形内角和定理直接推导三角形外角的两个推论,引导学生从内和外、相等和不等的不同角度对三角形作更全面的思考注意事项: 新的定理的推导过程应建立在学生的充分思考和论证的基础之上,教师切勿越俎代庖。第三环节:课堂练习活动内容:(1) 已知,如图,在三角形ABC中,AD平分外角EAC,B=C求证:ADBC分析:要证明ADBC,只需证明“同位角相等”,即需证明DAE=B.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)BACDEB=EAC(等式的性质)AD平分EAC(已知)DAE=EAC(角平分线的定义)DAE=B(等量代换)ADBC(同位角相等,两直线平行)想

6、一想,还有没有其他的证明方法呢?这个题还可以用“内错角相等,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC(角平分线的定义)DAC=C(等量代换)ADBC(内错角相等,两直线平行)还可以用“同旁内角互补,两直线平行”来证.证明:EAC=B+C(三角形的一个外角等于和它不相邻的两个内角的和)B=C(已知)C=EAC(等式的性质)AD平分EAC(已知)DAC=EAC DAC=C(等量代换)B+BAC+C=180B+BAC+DAC=180 即:B+DAB=180ADBC(同旁内角互补,两

7、直线平行)ABCDE1F2 已知:如图,在三角形ABC中,1是它的一个外角,E为边AC上一点,延长BC到D,连接DE求证:12证明:1是ABC的一个外角(已知)1ACB(三角形的一个外角大于任何一个和它不相邻的内角)ACB是CDE的一个外角(已知)ACB2(三角形的一个外角大于任何一个和它不相邻的内角)12(不等式的性质).如图,求证:(1)BDCA.(2)BDC=B+C+A.如果点D在线段BC的另一侧,结论会怎样?分析通过学生的探索活动,使学生进一步了解辅助线的作法及重要性,理解掌握三角形的内角和定理及推论.证法一:(1)连接AD,并延长AD,如图,则1是ABD的一个外角,2是ACD的一个外

8、角.13.24(三角形的一个外角大于任何一个和它不相邻的内角)1+23+4(不等式的性质)即:BDCBAC.(2)连结AD,并延长AD,如图.则1是ABD的一个外角,2是ACD的一个外角.1=3+B2=4+C(三角形的一个外角等于和它不相邻的两个内角的和)1+2=3+4+B+C(等式的性质)即:BDC=B+C+BAC证法二:(1)延长BD交AC于E(或延长CD交AB于E),如图.则BDC是CDE的一个外角.BDCDEC.(三角形的一个外角大于任何一个和它不相邻的内角)DEC是ABE的一个外角(已作)DECA(三角形的一个外角大于任何一个和它不相邻的内角)BDCA(不等式的性质)(2)延长BD交

9、AC于E,则BDC是DCE的一个外角.BDC=C+DEC(三角形的一个外角等于和它不相邻的两个内角的和)DEC是ABE的一个外角DEC=A+B(三角形的一个外角等于和它不相邻的两个内角的和)BDC=B+C+BAC(等量代换)活动目的: 让学生接触各种类型的几何证明题,提高逻辑推理能力,培养学生的证明思路,特别是不等关系的证明题,因为学生接触较少,因此更需要加强练习注意事项: 学生对于几何图形中的不等关系的证明比较陌生,因此有必要在证明第2小题中,要引导学生找到一个过渡角ACB,由1ACB,ACB2,再由不等关系的传递性得出12。第四环节:课堂反思与小结活动内容:由学生自行归纳本节课所学知识:推

10、论1: 三角形的一个外角等于和它不相邻的两个内角的和推论 2:三角形的一个外角大于任何一个和它不相邻的内角活动目的:复习巩固所学知识,理清思路,培养学生的归纳概括能力注意事项: 学生对于三角形外角的两个推论以及它们的应用有一定的了解。课后练习:课本第183页的随堂练习第1,2题,习题7.7。思考题:课本245页第4题(给学有余力的同学做)四、教学反思教学中,帮助学生找三角形的外角是难点,特别是当一个角是某个三角形的内角,同时又是另一个三角形的外角时,困难就更大,解决这个难点的关键是讲清定义,分析图形,变换位置,理清思路。本节课的教学设计力图具有以下几个特色:(2) 充分挖掘学生的潜能,展示学生的思维过程,体现“学生是学习的主人”这一主题;(3) 从特殊到一般,从不完全归纳到合情推理,展示了一个完整的思维过程;(4) 在整个教学中尽可能的避免教学的单调性,因此编排了一题多解的训练,为发散性思维创设情境,调动学生学习的极大热情。6最新北师大版八年级数学精品资料设计

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服