1、第一章 三角函数1.1任意角和弧度制1.1.1任意角一、 教学目标:1、知识与技能(1)推广角的概念、引入大于角和负角;(2)理解并掌握正角、负角、零角的定义;(3)理解任意角以及象限角的概念;(4)掌握所有与角终边相同的角(包括角)的表示方法;(.二、教学重、难点 重点: 理解正角、负角和零角的定义,掌握终边相同角的表示法.难点: 终边相同的角的表示.三、学法回忆-观察-讲解-归纳-推广.四、教学设想 【创设情境】思考:你的手表慢了5分钟,你是怎样将它校准的?假如你的手表快了1.25小时,你应当如何将它校准?当时间校准以后,分针转了多少度? 取出一个钟表,实际操作我们发现,校正过程中分针需要
2、正向或反向旋转,有时转不到一周,有时转一周以上,这就是说角已不仅仅局限于之间,这正是我们这节课要研究的主要内容任意角.【探究新知】1初中时,我们已学习了角的概念,它是如何定义的呢?角可以看成平面内一条射线绕着端点从一个位置旋转到另一个位置所成的图形.如图1.1-1,一条射线由原来的位置,绕着它的端点按逆时针方向旋转到终止位置,就形成角.旋转开始时的射线叫做角的始边,叫终边,射线的端点叫做叫的顶点. 2.如上述情境中所说的校准时钟问题以及在体操比赛中我们经常听到这样的术语:“转体” (即转体2周),“转体”(即转体3周)等,都是遇到大于的角以及按不同方向旋转而成的角.同学们思考一下:能否再举出几
3、个现实生活中“大于的角或按不同方向旋转而成的角”的例子,这些说明了什么问题?又该如何区分和表示这些角呢?如自行车车轮、螺丝扳手等按不同方向旋转时成不同的角, 这些都说明了我们研究推广角概念的必要性. 为了区别起见,我们规定:按逆时针方向旋转所形成的角叫正角,按顺时针方向旋转所形成的角叫负角如果一条射线没有做任何旋转,我们称它形成了一个零角.如教材图1.1.3(1)中的角是一个正角,它等于;图1.1.3(2)中,正角,负角;这样,我们就把角的概念推广到了任意角,包括正角、负角和零角. 为了简单起见,在不引起混淆的前提下,“角”或“”可简记为.3.在今后的学习中,我们常在直角坐标系内讨论角,为此我
4、们必须了解象限角这个概念.角的顶点与原点重合,角的始边与轴的非负半轴重合。那么,角的终边(除端点外)在第几象限,我们就说这个角是第几象限角.如教材图1.1-4中的角、角分别是第一象限角和第三象限角.要特别注意:如果角的终边在坐标轴上,就认为这个角不属于任何一个象限,称为非象限角.4.练习:(1)(口答)锐角是第几象限角?第一象限角一定是锐角吗?再分别就直角、钝角来回答这两个问题.(2)(回答)今天是星期三那么天后的那一天是星期几? 天前的那一天是星期几?100天后的那一天是星期几?5.探究:将角按上述方法放在直角坐标系中后,给定一个角,就有唯一的一条终边与之对应.反之,对于直角坐标系中任意一条
5、射线(如图1.1-5),以它为终边的角是否唯一?如果不惟一,那么终边相同的角有什么关系?请结合4.(2)口答加以分析.展示课件不难发现,在教材图1.1-5中,如果的终边是,那么角的终边都是,而,.设,则角都是的元素,角也是的元素.因此,所有与角终边相同的角,连同角在内,都是集合的元素;反过来,集合的任一元素显然与角终边相同.一般地,我们有:所有与角终边相同的角,连同角在内,可构成一个集合,即任一与角终边相同的角,都可以表示成角与整数个周角的和.6例题讲评例1. 例1在范围内,找出与角终边相同的角,并判定它是第几象限角.(注:是指)例2.写出终边在轴上的角的集合.例3.写出终边直线在上的角的集合
6、,并把中适合不等式的元素写出来.7.练习 教材第3、4、5题.注意: (1);(2)是任意角(正角、负角、零角);(3)终边相同的角不一定相等;但相等的角,终边一定相同;终边相同的角有无数多个,它们相差的整数倍.8.学习小结(1) 你知道角是如何推广的吗?(2) 象限角是如何定义的呢?(3) 你熟练掌握具有相同终边角的表示了吗?会写终边落在轴、轴、直线上的角的集合.五、评价设计作业:习题1.1 A组第1,2,3题 1.1.2弧度制一、教学目标:(1)理解并掌握弧度制的定义;(2)领会弧度制定义的合理性;(3)掌握并运用弧度制表示的弧长公式、扇形面积公式;(4)熟练地进行角度制与弧度制的换算;(
7、5)角的集合与实数集之间建立的一一对应关系.(6) 使学生通过弧度制的学习,理解并认识到角度制与弧度制都是对角度量的方法,二者是辨证统一的,而不是孤立、割裂的关系.二、教学重、难点 重点: 理解并掌握弧度制定义;熟练地进行角度制与弧度制地互化换算;弧度制的运用.难点: 理解弧度制定义,弧度制的运用.三、教学设想 【创设情境】有人问:海口到三亚有多远时,有人回答约250公里,但也有人回答约160英里,请问那一种回答是正确的?(已知1英里=1.6公里)显然,两种回答都是正确的,但为什么会有不同的数值呢?那是因为所采用的度量制不同,一个是公里制,一个是英里制.他们的长度单位是不同的,但是,他们之间可
8、以换算:1英里=1.6公里.在角度的度量里面,也有类似的情况,一个是角度制,我们已经不再陌生,另外一个就是我们这节课要研究的角的另外一种度量制-弧度制.【探究新知】1角度制规定:将一个圆周分成360份,每一份叫做1度,故一周等于360度,平角等于180度,直角等于90度等等.弧度制是什么呢?1弧度是什么意思?一周是多少弧度?半周呢?直角等于多少弧度?弧度制与角度制之间如何换算?请看课本,自行解决上述问题.2.弧度制的定义长度等于半径长的圆弧所对的圆心角叫做1弧度角,记作1,或1弧度,或1(单位可以省略不写).3.探究:如图,半径为的圆的圆心与原点重合,角的终边与轴的正半轴重合,交圆于点,终边与
9、圆交于点.请完成表格.弧的长旋转的方向的弧度数的度数逆时针方向逆时针方向我们知道,角有正负零角之分,它的弧度数也应该有正负零之分,如-,-2等等,一般地, 正角的弧度数是一个正数,负角的弧度数是一个负数,零角的弧度数是0,角的正负主要由角的旋转方向来决定.4.思考:如果一个半径为的圆的圆心角所对的弧长是,那么的弧度数是多少?角的弧度数的绝对值是:,其中,l是圆心角所对的弧长,是半径.5.根据探究中填空:,度显然,我们可以由此角度与弧度的换算了.6.例题讲解例1.按照下列要求,把化成弧度:(1) 精确值;(2) 精确到0.001的近似值.例2.将3.14换算成角度(用度数表示,精确到0.001)
10、.注意:角度制与弧度制的换算主要抓住,另外注意计算器计算非特殊角的方法.7. 填写特殊角的度数与弧度数的对应表:度弧度角的概念推广以后,在弧度制下,角的集合与实数集之间建立了一一对应关系:即每一个角都有唯一的一个实数(即这个角的弧度数)与它对应;反过来,每一个实数也都有唯一的一个角(即弧度数等于这个实数的角)与它对应.8.例题讲评 例3.利用弧度制证明下列关于扇形的公式: (1); (2); (3).其中是半径,是弧长,为圆心角,是扇形的面积.例4.利用计算器比较和的大小.注意:弧度制定义的理解与应用,以及角度与弧度的区别.9.练习 教材.五、作业:习题1.1 A组第7,8,9题 1.2 任意
11、角的三角函数1.2.1任意角的三角函数(一)一、教学目标:(1)掌握任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);(2)理解任意角的三角函数不同的定义方法;(3)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来;(4)掌握并能初步运用公式一;二、教学重、难点 重点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);终边相同的角的同一三角函数值相等(公式一).难点: 任意角的正弦、余弦、正切的定义(包括这三种三角函数的定义域和函数值在各象限的符号);三角函数线的正确理
12、解.三、教学设想 y P(a,b) r O M第一课时 任意角的三角函数(一)【创设情境】提问:锐角O的正弦、余弦、正切怎样表示?借助右图直角三角形,复习回顾.引入:锐角三角函数就是以锐角为自变量,以比值为函数值的函数。数,你能用直角坐标系中角的终边上点的坐标来表示锐角三角函数吗?a的终边P(x,y)Oxy如图,设锐角的顶点与原点重合,始边与轴的正半轴重合,那么它的终边在第一象限.在的终边上任取一点,它与原点的距离.过作轴的垂线,垂足为,则线段的长度为,线段的长度为.则; .思考:对于确定的角,这三个比值是否会随点在的终边上的位置的改变而改变呢?显然,我们可以将点取在使线段的长的特殊位置上,这
13、样就可以得到用直角坐标系内的点的坐标表示锐角三角函数:; ; .思考:上述锐角的三角函数值可以用终边上一点的坐标表示.那么,角的概念推广以后,我们应该如何对初中的三角函数的定义进行修改,以利推广到任意角呢?本节课就研究这个问题任意角的三角函数.【探究新知】1.探究:结合上述锐角的三角函数值的求法,我们应如何求解任意角的三角函数值呢? 显然,我们只需在角的终边上找到一个点,使这个点到原点的距离为1,然后就可以类似锐角求得该角的三角函数值了.所以,我们在此引入单位圆的定义:在直角坐标系中,我们称以原点为圆心,以单位长度为半径的圆.2.思考:如何利用单位圆定义任意角的三角函数的定义?如图,设是一个任
14、意角,它的终边与单位圆交于点,那么:(1)叫做的正弦(sine),记做,即;(2)叫做的余弦(cossine),记做,即;(3)叫做的正切(tangent),记做,即.注意:当是锐角时,此定义与初中定义相同(指出对边,邻边,斜边所在);当不是锐角时,也能够找出三角函数,因为,既然有角,就必然有终边,终边就必然与单位圆有交点,从而就必然能够最终算出三角函数值.3.思考:如果知道角终边上一点,而这个点不是终边与单位圆的交点,该如何求它的三角函数值呢?前面我们已经知道,三角函数的值与点在终边上的位置无关,仅与角的大小有关.我们只需计算点到原点的距离,那么,.所以,三角函数是以为自变量,以单位圆上点的
15、坐标或坐标的比值为函数值的函数,又因为角的集合与实数集之间可以建立一一对应关系,故三角函数也可以看成实数为自变量的函数.4.例题讲评例1.求的正弦、余弦和正切值.例2已知角的终边过点,求角的正弦、余弦和正切值.教材给出这两个例题,主要是帮助理解任意角的三角函数定义.我也可以尝试其他方法:如例2:设则.于是 ,.5.巩固练习第1,2,3题6.探究:请根据任意角的三角函数定义,将正弦、余弦和正切函数的定义域填入下表;再将这三种函数的值在各个象限的符号填入表格中:三角函数定义域第一象限第二象限第三象限第四象限角度制弧度制7例题讲评例3求证:当且仅当不等式组成立时,角为第三象限角.8.思考:根据三角函
16、数的定义,终边相同的角的同一三角函数值有和关系?显然: 终边相同的角的同一三角函数值相等.即有公式一: (其中)9.例题讲评 例4.确定下列三角函数值的符号,然后用计算器验证:(1); (2); (3); (4)例5.求下列三角函数值:(1); (2); (3)利用公式一,可以把求任意角的三角函数值, 转化为求到(或到)角的三角函数值. 另外可以直接利用计算器求三角函数值,但要注意角度制的问题.10.巩固练习第4,5,6,7题五、评价1作业:习题1.2 A组第1,2题 2比较角概念推广以后,三角函数定义的变化.思考公式一的本质是什么?要做到熟练应用.另外,关于三角函数值在各象限的符号要熟练掌握
17、,知道推导方法.第二课时 任意角的三角函数(二)【复习回顾】1、 三角函数的定义;2、 三角函数在各象限角的符号;3、 三角函数在轴上角的值;4、 诱导公式(一):终边相同的角的同一三角函数的值相等;5、 三角函数的定义域.要求:记忆.并指出,三角函数没有定义的地方一定是在轴上角,所以,凡是碰到轴上角时,要结合定义进行分析;并要求在理解的基础上记忆.【探究新知】1引入:角是一个图形概念,也是一个数量概念(弧度数).作为角的函数三角函数是一个数量概念(比值),但它是否也是一个图形概念呢?换句话说,能否用几何方式来表示三角函数呢?Oxya角的终边PTMA2边描述边画以坐标原点为圆心,以单位长度1为
18、半径画一个圆,这个圆就叫做单位圆(注意:这个单位长度不一定就是1厘米或1米).当角为第一象限角时,则其终边与单位圆必有一个交点,过点作轴交轴于点,则请你观察:根据三角函数的定义:;随着在第一象限内转动,、是否也跟着变化? 3思考:(1)为了去掉上述等式中的绝对值符号,能否给线段、规定一个适当的方向,使它们的取值与点的坐标一致?(2)你能借助单位圆,找到一条如、一样的线段来表示角的正切值吗?我们知道,指标坐标系内点的坐标与坐标轴的方向有关.当角的终边不在坐标轴时,以为始点、为终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无
19、论那种情况都有同理,当角的终边不在轴上时,以为始点、为终点,规定:当线段与轴同向时,的方向为正向,且有正值;当线段与轴反向时,的方向为负向,且有正值;其中为点的横坐标.这样,无论那种情况都有4.像这种被看作带有方向的线段,叫做有向线段(direct line segment).5.如何用有向线段来表示角的正切呢?如上图,过点作单位圆的切线,这条切线必然平行于轴,设它与的终边交于点,请根据正切函数的定义与相似三角形的知识,借助有向线段,我们有我们把这三条与单位圆有关的有向线段,分别叫做角的正弦线、余弦线、正切线,统称为三角函数线.6.探究:(1)当角的终边在第二、第三、第四象限时,你能分别作出它
20、们的正弦线、余弦线和正切线吗?(2)当的终边与轴或轴重合时,又是怎样的情形呢?7.例题讲解例1已知,试比较的大小.处理:师生共同分析解答,目的体会三角函数线的用处和实质.8.练习第1,2,3,4题9学习小结(1)了解有向线段的概念.(2)了解如何利用与单位圆有关的有向线段,将任意角的正弦、余弦、正切函数值分别用正弦线、余弦线、正切线表示出来.(3)体会三角函数线的简单应用.【评价设计】1 作业: 比较下列各三角函数值的大小(不能使用计算器)(1)、 (2)、 (3)、2练习三角函数线的作图.1.2任意角的三角函数1.2.2同角三角函数的基本关系一、教学目标:1、知识与技能(1) 使学生掌握同角
21、三角函数的基本关系;(2)已知某角的一个三角函数值,求它的其余各三角函数值;(3)利用同角三角函数关系式化简三角函数式;(4)利用同角三角函数关系式证明三角恒等式;(5)牢固掌握同角三角函数的三个关系式并能灵活运用于解题,提高学生分析,解决三角问题的能力;(6)灵活运用同角三角函数关系式的不同变形,提高三角恒等变形的能力,进一步树立化归思想方法;(7)掌握恒等式证明的一般方法.二、教学重、难点 重点:公式及的推导及运用:(1)已知某任意角的正弦、余弦、正切值中的一个,求其余两个;(2)化简三角函数式;(3)证明简单的三角恒等式.难点: 根据角终边所在象限求出其三角函数值;选择适当的方法证明三角
22、恒等式.三、教学设想 【创设情境】OxyPM1A(1,0)与初中学习锐角三角函数一样,本节课我们来研究同角三角函数之间关系,弄清同角各不同三角函数之间的联系,实现不同函数值之间的互相转化【探究新知】1. 探究:三角函数是以单位圆上点的坐标来定义的,你能从圆的几何性质出发,讨论一下同一个角不同三角函数之间的关系吗? 如图:以正弦线,余弦线和半径三者的长构成直角三角形,而且.由勾股定理由,因此,即.根据三角函数的定义,当时,有.这就是说,同一个角的正弦、余弦的平方等于1,商等于角的正切.2. 例题讲评例6.已知,求的值.三者知一求二,熟练掌握. 3. 巩固练习页第1,2,3题4.例题讲评例7.求证
23、:.通过本例题,总结证明一个三角恒等式的方法步骤.5.巩固练习页第4,5题6.学习小结(1)同角三角函数的关系式的前提是“同角”,因此,(2)利用平方关系时,往往要开方,因此要先根据角所在象限确定符号,即要就角所在象限进行分类讨论五、评价设计(1) 作业:习题1.2A组第10,13题.(2) 熟练掌握记忆同角三角函数的关系式,试将关系式变形等,得到其他几个常用的关系式;注意三角恒等式的证明方法与步骤.第二章 平面向量2.1 平面向量的实际背景及基本概念教学目标:1. 了解向量的实际背景,理解平面向量的概念和向量的几何表示;掌握向量的模、零向量、单位向量、平行向量、相等向量、共线向量等概念;并会
24、区分平行向量、相等向量和共线向量.2. 通过对向量的学习,使学生初步认识现实生活中的向量和数量的本质区别.3. 通过学生对向量与数量的识别能力的训练,培养学生认识客观事物的数学本质的能力.教学重点:理解并掌握向量、零向量、单位向量、相等向量、共线向量的概念,会表示向量.教学难点:平行向量、相等向量和共线向量的区别和联系.学 法:本节是本章的入门课,概念较多,但难度不大.学生可根据在原有的位移、力等物理概念来学习向量的概念,结合图形实物区分平行向量、相等向量、共线向量等概念.教学思路:一、情景设置:ABCD如图,老鼠由A向西北逃窜,猫在B处向东追去,设问:猫能否追到老鼠?(画图)结论:猫的速度再
25、快也没用,因为方向错了.分析:老鼠逃窜的路线AC、猫追逐的路线BD实际上都是有方向、有长短的量.引言:请同学指出哪些量既有大小又有方向?哪些量只有大小没有方向?二、新课学习: (一)向量的概念:我们把既有大小又有方向的量叫向量(二)请同学阅读课本后回答:(可制作成幻灯片)1、数量与向量有何区别?2、如何表示向量?3、有向线段和线段有何区别和联系?分别可以表示向量的什么?4、长度为零的向量叫什么向量?长度为1的向量叫什么向量?5、满足什么条件的两个向量是相等向量?单位向量是相等向量吗?6、有一组向量,它们的方向相同或相反,这组向量有什么关系?7、如果把一组平行向量的起点全部移到一点O,这是它们是
26、不是平行向量?这时各向量的终点之间有什么关系? (三)探究学习1、数量与向量的区别:数量只有大小,是一个代数量,可以进行代数运算、比较大小;向量有方向,大小,双重性,不能比较大小. A(起点) B(终点)a2.向量的表示方法:用有向线段表示;用字母、(黑体,印刷用)等表示;用有向线段的起点与终点字母:;向量的大小长度称为向量的模,记作|. 3.有向线段:具有方向的线段就叫做有向线段,三个要素:起点、方向、长度.向量与有向线段的区别:(1)向量只有大小和方向两个要素,与起点无关,只要大小和方向相同,则这两个向量就是相同的向量;(2)有向线段有起点、大小和方向三个要素,起点不同,尽管大小和方向相同
27、,也是不同的有向线段.4、零向量、单位向量概念:长度为0的向量叫零向量,记作0. 0的方向是任意的.注意0与0的含义与书写区别.长度为1个单位长度的向量,叫单位向量.说明:零向量、单位向量的定义都只是限制了大小.5、平行向量定义:方向相同或相反的非零向量叫平行向量;我们规定0与任一向量平行.说明:(1)综合、才是平行向量的完整定义;(2)向量、平行,记作.6、相等向量定义:长度相等且方向相同的向量叫相等向量.说明:(1)向量与相等,记作;(2)零向量与零向量相等;(3)任意两个相等的非零向量,都可用同一条有向线段来表示,并且与有向线段的起点无关.7、共线向量与平行向量关系:平行向量就是共线向量
28、,这是因为任一组平行向量都可移到同一直线上(与有向线段的起点无关).说明:(1)平行向量可以在同一直线上,要区别于两平行线的位置关系;(2)共线向量可以相互平行,要区别于在同一直线上的线段的位置关系.(四)理解和巩固: 例1 书本86页例1.例2判断:(1)平行向量是否一定方向相同?(不一定)(2)不相等的向量是否一定不平行?(不一定)(3)与零向量相等的向量必定是什么向量?(零向量)(4)与任意向量都平行的向量是什么向量?(零向量)(5)若两个向量在同一直线上,则这两个向量一定是什么向量?(平行向量)(6)两个非零向量相等的当且仅当什么?(长度相等且方向相同)(7)共线向量一定在同一直线上吗
29、?(不一定)例3下列命题正确的是( )A.与共线,与共线,则与c也共线B.任意两个相等的非零向量的始点与终点是一平行四边形的四顶点C.向量与不共线,则与都是非零向量D.有相同起点的两个非零向量不平行解:由于零向量与任一向量都共线,所以A不正确;由于数学中研究的向量是自由向量,所以两个相等的非零向量可以在同一直线上,而此时就构不成四边形,根本不可能是一个平行四边形的四个顶点,所以B不正确;向量的平行只要方向相同或相反即可,与起点是否相同无关,所以不正确;对于C,其条件以否定形式给出,所以可从其逆否命题来入手考虑,假若与不都是非零向量,即与至少有一个是零向量,而由零向量与任一向量都共线,可有与共线
30、,不符合已知条件,所以有与都是非零向量,所以应选C.例4 如图,设O是正六边形ABCDEF的中心,分别写出图中与向量、相等的向量.变式一:与向量长度相等的向量有多少个?(11个)变式二:是否存在与向量长度相等、方向相反的向量?(存在)变式三:与向量共线的向量有哪些?()课堂练习:1判断下列命题是否正确,若不正确,请简述理由.向量与是共线向量,则A、B、C、D四点必在一直线上;单位向量都相等;任一向量与它的相反向量不相等;四边形ABCD是平行四边形当且仅当 一个向量方向不确定当且仅当模为0;共线的向量,若起点不同,则终点一定不同.解:不正确.共线向量即平行向量,只要求方向相同或相反即可,并不要求
31、两个向量、在同一直线上.不正确.单位向量模均相等且为1,但方向并不确定.不正确.零向量的相反向量仍是零向量,但零向量与零向量是相等的. 、正确.不正确.如图与共线,虽起点不同,但其终点却相同.2书本88页练习三、小结 :1、 描述向量的两个指标:模和方向.2、 平行向量不是平面几何中的平行线段的简单类比.3、 向量的图示,要标上箭头和始点、终点.四、课后作业: 书本88页习题2.1第3、5题第2课时2.2.1 向量的加法运算及其几何意义教学目标:1、 掌握向量的加法运算,并理解其几何意义; 2、 会用向量加法的三角形法则和平行四边形法则作两个向量的和向量,培养数形结合解决问题的能力; 3、 通
32、过将向量运算与熟悉的数的运算进行类比,使学生掌握向量加法运算的交换律和结合律,并会用它们进行向量计算,渗透类比的数学方法;教学重点:会用向量加法的三角形法则和平行四边形法则作两个向量的和向量.教学难点:理解向量加法的定义.学 法:数能进行运算,向量是否也能进行运算呢?数的加法启发我们,从运算的角度看,位移的合成、力的合成可看作向量的加法.借助于物理中位移的合成、力的合成来理解向量的加法,让学生顺理成章接受向量的加法定义.结合图形掌握向量加法的三角形法则和平行四边形法则.联系数的运算律理解和掌握向量加法运算的交换律和结合律.教学思路:一、设置情景:1、 复习:向量的定义以及有关概念强调:向量是既
33、有大小又有方向的量.长度相等、方向相同的向量相等.因此,我们研究的向量是与起点无关的自由向量,即任何向量可以在不改变它的方向和大小的前提下,移到任何位置A B C2、 情景设置:(1)某人从A到B,再从B按原方向到C,C A B 则两次的位移和:(2)若上题改为从A到B,再从B按反方向到C,A BC 则两次的位移和:(3)某车从A到B,再从B改变方向到C,A BC 则两次的位移和:(4)船速为,水速为,则两速度和:二、探索研究:、向量的加法:求两个向量和的运算,叫做向量的加法.、三角形法则(“首尾相接,首尾连”)如图,已知向量a、.在平面内任取一点,作a,则向量叫做a与的和,记作a,即 a,规
34、定: a + 0-= 0 +aa aABCa+ba+baabbaa探究:(1)两相向量的和仍是一个向量;(2)当向量与不共线时,+的方向不同向,且|+|,则+的方向与相同,且|+|=|-|;若|0时与方向相同;0时与方向相反;=0时=2运算定律结合律:()=() ;分配律:(+)=+, (+)=+ 3. 向量共线定理 向量与非零向量共线的充要条件是:有且只有一个非零实数,使=.二、讲解新课:平面向量基本定理:如果,是同一平面内的两个不共线向量,那么对于这一平面内的任一向量,有且只有一对实数1,2使=1+2.探究:(1) 我们把不共线向量、叫做表示这一平面内所有向量的一组基底;(2) 基底不惟一
35、,关键是不共线;(3) 由定理可将任一向量a在给出基底、的条件下进行分解;(4) 基底给定时,分解形式惟一. 1,2是被,唯一确定的数量三、讲解范例:例1 已知向量, 求作向量-2.5+3.例2 如图 ABCD的两条对角线交于点M,且=,=,用,表示,和 例3已知 ABCD的两条对角线AC与BD交于E,O是任意一点,求证:+=4例4(1)如图,不共线,=t (tR)用,表示. (2)设不共线,点P在O、A、B所在的平面内,且.求证:A、B、P三点共线. 例5 已知 a=2e1-3e2,b= 2e1+3e2,其中e1,e2不共线,向量c=2e1-9e2,问是否存在这样的实数与c共线.四、课堂练习:1.设e1、e2是同一平面内的两个向量,则有( )A.e1、e2一定平行 B.e1、