1、2019年数学高考试题汇编立体几何1、全国I理12已知三棱锥PABC的四个顶点在球O的球面上,PA=PB=PC,ABC是边长为2的正三角形,E,F分别是PA,AB的中点,CEF=90,则球O的体积为( )AB CD2、全国III理8如图,点N为正方形ABCD的中心,ECD为正三角形,平面ECD平面ABCD,M是线段ED的中点,则( )ABM=EN,且直线BM,EN 是相交直线BBMEN,且直线BM,EN 是相交直线CBM=EN,且直线BM,EN 是异面直线DBMEN,且直线BM,EN 是异面直线3、浙江4祖暅是我国南北朝时代的伟大科学家.他提出的“幂势既同,则积不容易”称为祖暅原理,利用该原理
2、可以得到柱体体积公式V柱体=Sh,其中S是柱体的底面积,h是柱体的高.若某柱体的三视图如图所示,则该柱体的体积是A158B162C182D324、浙江8设三棱锥V-ABC的底面是正三角形,侧棱长均相等,P是棱VA上的点(不含端点),记直线PB与直线AC所成角为,直线PB与平面ABC所成角为,二面角P-AC-B的平面角为,则A,B, C, D, 5、北京理(11)某几何体是由一个正方体去掉一个四棱柱所得,其三视图如图所示如果网格纸上小正方形的边长为1,那么该几何体的体积为_6、北京理(12)已知l,m是平面外的两条不同直线给出下列三个论断:lm;m;l以其中的两个论断作为条件,余下的一个论断作为
3、结论,写出一个正确的命题:_7、江苏9如图,长方体的体积是120,E为的中点,则三棱锥E-BCD的体积是 .8、全国I文16已知ACB=90,P为平面ABC外一点,PC=2,点P到ACB两边AC,BC的距离均为,那么P到平面ABC的距离为_ _9、全国II文理16中国有悠久的金石文化,印信是金石文化的代表之一印信的形状多为长方体、正方体或圆柱体,但南北朝时期的官员独孤信的印信形状是“半正多面体”(图1).半正多面体是由两种或两种以上的正多边形围成的多面体半正多面体体现了数学的对称美图2是一个棱数为48的半正多面体,它的所有顶点都在同一个正方体的表面上,且此正方体的棱长为1则该半正多面体共有_个
4、面,其棱长为_(本题第一空2分,第二空3分)10、全国III理16学生到工厂劳动实践,利用3D打印技术制作模型.如图,该模型为长方体挖去四棱锥OEFGH后所得的几何体,其中O为长方体的中心,E,F,G,H分别为所在棱的中点,3D打印所用原料密度为0.9 g/cm3,不考虑打印损耗,制作该模型所需原料的质量为_g.11、浙江17已知正方形的边长为1,当每个取遍时,的最小值是_,最大值是_.12、北京理(16)(本小题14分)如图,在四棱锥PABCD中,PA平面ABCD,ADCD,ADBC,PA=AD=CD=2,BC=3E为PD的中点,点F在PC上,且()求证:CD平面PAD;()求二面角FAEP
5、的余弦值;()设点G在PB上,且判断直线AG是否在平面AEF内,说明理由13、江苏16(本小题满分14分)如图,在直三棱柱ABCA1B1C1中,D,E分别为BC,AC的中点,AB=BC求证:(1)A1B1平面DEC1;(2)BEC1E14、全国I理18(12分)如图,直四棱柱ABCDA1B1C1D1的底面是菱形,AA1=4,AB=2,BAD=60,E,M,N分别是BC,BB1,A1D的中点(1)证明:MN平面C1DE;(2)求二面角AMA1N的正弦值文(2)求点C到平面C1DE的距离15、全国II理(一)必考题:共60分。 17(12分)如图,长方体ABCDA1B1C1D1的底面ABCD是正方
6、形,点E在棱AA1上,BEEC1(1)证明:BE平面EB1C1;(2)若AE=A1E,求二面角BECC1的正弦值文(2)若AE=A1E,AB=3,求四棱锥的体积16、全国III理19(12分)图1是由矩形ADEB,RtABC和菱形BFGC组成的一个平面图形,其中AB=1,BE=BF=2,FBC=60,将其沿AB,BC折起使得BE与BF重合,连结DG,如图2.(1)证明:图2中的A,C,G,D四点共面,且平面ABC平面BCGE;(2)求图2中的二面角BCGA的大小.文(2)求图2中的四边形ACGD的面积.17、浙江19.(本小题满分15分)如图,已知三棱柱,平面平面,,分别是AC,A1B1的中点
7、.(1)证明:;(2)求直线EF与平面A1BC所成角的余弦值.18、全国I理2018 某圆柱的高为2,底面周长为16,其三视图如图圆柱表面上的点在正视图上的对应点为,圆柱表面上的点在左视图上的对应点为,则在此圆柱侧面上,从到的路径中,最短路径的长度为ABC3D219、全国I理2018已知正方体的棱长为1,每条棱所在直线与平面所成的角都相等,则截此正方体所得截面面积的最大值为( )ABC D20、全国I理2018(12分)如图,四边形为正方形,分别为的中点,以为折痕把折起,使点到达点的位置,且.(1)证明:平面平面;(2)求与平面所成角的正弦值.20、全国I文2018(12分)如图,在平行四边形中,以为折痕将折起,使点到达点的位置,且(1)证明:平面平面;(2)为线段上一点,为线段上一点,且,求三棱锥的体积