1、 第3章 线性系统的时域分析 3.1 3.1 自动控制系统时域响应的基本概念自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析 3.1 3.1自动控制系统自动控制系统时域响应时域响应的基本概念的基本概念 1 1 典型输入信号典型输入信号 2 瞬态响应瞬态响应 指系统在典型输入信号作用下,系统输出量从初始状态到最终状态的响应过程。又称动态过程或过渡过程。瞬态响应可以提供关于系统稳定性、响应速度及阻尼情况等信息。3 稳态响应稳态响应 指系统在典型输入信号作用下,当时间
2、t 趋于无穷时,系统输出量的表现方式。稳态响应又称稳态过程。稳态响应可以提供系统有关稳态误差的信息。3.1 3.1自动控制系统自动控制系统时域响应时域响应的基本概念的基本概念 4 4 稳定性稳定性 若控制系统在初始条件或扰动影响下,其瞬态响应随着时间的推移而逐渐衰减并趋于零,则称系统稳定;反之,不稳定。控制系统能在实际中应用,其首要条件是保证系统具有稳定性。不稳定的控制系统,当受到外界或其内部一些因素的扰动,如负载或电源的波动,系统的变化等,就会使系统的输出量越来越偏离其平衡状态,即使扰动因素消失,也不可能再恢复到原平衡状态。控制系统的稳定性取决于系统本身的结构和参数,与外加信号无关。3.1
3、3.1自动控制系统自动控制系统时域响应时域响应的基本概念的基本概念 5 5 误差和稳态误差误差和稳态误差 控制系统在输入信号的作用下,其输出量中包含瞬态分量和稳态分量两个分量。对于稳定的系统,瞬态分量随时间的推移而逐渐消失,稳态分量则从输入信号加入的瞬时起就始终存在,其表现方式就是稳态响应。稳态响应反映了控制系统跟踪输入信号或抑制扰动信号的能力和精度。这种能力或精度称为系统的稳态性能。一个系统的稳态性能是以系统响应某些典型输入信号时的稳态误差来评价的。3.1 3.1自动控制系统自动控制系统时域响应时域响应的基本概念的基本概念 第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3
4、.2 3.2 自动控制系统的稳定性和代数稳定判据自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析 3.2 3.2 稳定性和代数稳定判据稳定性和代数稳定判据 1 1 稳定性定义稳定性定义(1)当系统受到有界输入作用时,输出也是有界的,称为有界输入有界输出稳定;(2)系统没有输入作用,仅在初始条件作用下输出能随时间趋于平衡状态,称为渐近稳定。系统在有界输入作用下稳定的充分必要条件是系统传递函数分母多项式的根具有负实部。2 2 劳斯胡维茨判据劳斯胡维茨判据 劳斯胡维茨判据就是可以不用求系统特征根而可以判断
5、系统特征根是否具有负实部的方法。3.23.2 稳定性和代数稳定判据稳定性和代数稳定判据 (1 1)劳斯判据)劳斯判据一般地,系统特征方程具有如下形式编写劳斯表如下:劳劳 斯斯 表表3.23.2 稳定性和代数稳定判据稳定性和代数稳定判据 设系统特征方程为:设系统特征方程为:s6+2s5+3s4+4s3+5s2+6s+7=0劳劳 斯斯 表表s6s5s0s1s2s3s41246357(64)/2=11(10-6)/2=22710(6-14)/1=-8-8劳斯表介绍劳斯表介绍劳斯表特点劳斯表特点2 每两行个数相等每两行个数相等1 右移一位降两阶右移一位降两阶3 行列式第一列不动行列式第一列不动4 次对
6、角线减主对角线次对角线减主对角线5 分母总是上一行第一个元素分母总是上一行第一个元素6 一行可同乘以或同除以某正数一行可同乘以或同除以某正数2+83.23.2 稳定性和代数稳定判据稳定性和代数稳定判据 劳斯判据劳斯判据如下:系统特征方程的根全部具有负实部(位于左半 s 平面即系统稳定)的充分必要条件,是该方程式的系数都是正的,且由该方程系数作出的劳斯表第一列元素全部都是正的;否则,第一列元素符号改变的次数,等于特征方程正实部根(位于右半 s 平面)的个数。3.2 3.2 稳定性和代数稳定判据稳定性和代数稳定判据 劳斯判据劳斯判据系统稳定的必要条件系统稳定的必要条件:有正有负一定不稳定有正有负一
7、定不稳定!缺项一定不稳定缺项一定不稳定!系统稳定的充分条件系统稳定的充分条件:劳斯表第一列元素不变号劳斯表第一列元素不变号!若变号系统不稳定若变号系统不稳定!变号的次数为特征根在变号的次数为特征根在s右半平面的个数右半平面的个数!特征方程各项系数特征方程各项系数均大于零均大于零!-s-s2 2-5s-6=0-5s-6=0稳定吗?稳定吗?3.2 3.2 稳定性和代数稳定判据稳定性和代数稳定判据 设系统特征方程为:设系统特征方程为:S4:S3:S2:S1:S0:1 2 12 401?用无穷小用无穷小代替代替0 0然后继续完成劳然后继续完成劳斯表斯表2213.2 3.2 稳定性和代数稳定判据稳定性和
8、代数稳定判据 劳斯表出现零行劳斯表出现零行设系统特征方程为:设系统特征方程为:s4+5s3+7s2+5s+6=0劳劳 斯斯 表表s0s1s2s3s451756116601 劳斯表何时会出现零行劳斯表何时会出现零行?2 出现零行怎么办出现零行怎么办?3 如何求对称的根如何求对称的根?由零行的上一行构成由零行的上一行构成辅助方程辅助方程:有大小相等符号相反的有大小相等符号相反的特征根时会出现零行特征根时会出现零行s2+1=0对其求导得零行系数对其求导得零行系数:2s1211继续计算劳斯表继续计算劳斯表1第一列全大于零第一列全大于零,所以系统稳定所以系统稳定劳斯表出现零行劳斯表出现零行系统系统一定一
9、定不稳定不稳定求解辅助方程得求解辅助方程得:s1,2=j由综合除法可得另两个根由综合除法可得另两个根为为s3,4=-2,-3 3.2 3.2 稳定性和代数稳定判据稳定性和代数稳定判据 第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 3.3 一阶系统的阶跃响应一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析3.3 3.3 一阶系统的时间响应一阶系统的时间响应1 1 一阶系统的数学模型一阶系统的数学模型结构图和闭环极点分布图为:T是表征系统惯性大小的重要参数。3.3 3.3 一
10、阶系统的时间响应一阶系统的时间响应2 2 一阶系统的单位阶跃响应一阶系统的单位阶跃响应3.3 3.3 一阶系统的时间响应一阶系统的时间响应 3.3 3.3 一阶系统的时间响应一阶系统的时间响应一阶系统时域分析一阶系统时域分析无零点的一阶系统无零点的一阶系统 (s)=Ts+1k,T时间常数时间常数(画图时取画图时取k=1,T=0.5)单单位位脉脉冲冲响响应应k(t)=T1e-Ttk(0)=T1K(0)=T单单位位阶阶跃跃响响应应h(t)=1-e-t/Th(0)=1/Th(T)=0.632h()h(3T)=0.95h()h(2T)=0.865h()h(4T)=0.982h()单单位位斜斜坡坡响响应
11、应c(t)=t-T+Te-t/TT?r(t)=(t)r(t)=1(t)r(t)=t 问问1、3个图各如何求个图各如何求T?2、调节时间、调节时间ts=?3、r(t)=at时,时,ess=?4、求导关系?、求导关系?k(0)=1/T2 3.3 3.3 一阶系统的时间响应一阶系统的时间响应 第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 3.4 二阶系统的阶跃响应二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 误差分析3.4 3.4 二阶系统分析二阶系统分析1 1 二阶系统的数学模型二
12、阶系统的数学模型 二阶系统传递函数的标准形式式中,为系统的阻尼比 wn为无阻尼振荡频率,简称固有频率(也称自然振荡频率)闭环特征方程为:其特征根即为闭环传递函数的极点为1)当0 1时,特征方程具有两个不相等的负实根,称为过阻尼状态。(如图c)4)当=0时,系统有一对共轭纯虚根,系统单位阶跃响应作等幅振荡,称为无阻尼或零阻尼状态。(如图d)下面,分过阻尼(包括临界阻尼)和欠阻尼(包括零阻尼)两种情况,来研究二阶系统的单位阶跃响应。3.4 3.4 二阶系统分析二阶系统分析 3.4 3.4 二阶系统的时间响应二阶系统的时间响应二阶系统单位阶跃响应二阶系统单位阶跃响应定性分析定性分析(s)=s2+2n
13、s+n2n21:1:01:0:第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 3.5 二阶系统的时域指标二阶系统的时域指标3.6 高阶系统3.7 误差分析欠阻尼二阶系统动态性能分析与计算欠阻尼二阶系统动态性能分析与计算de-nt1-2h(t)=11sin(t+)令h(t)=1取其解中的最小值,-d得 tr=令h(t)一阶导数=0,取其解中的最小值,得 tp=d由%=h()h(tp)h()100%得%=e-/1-2100%由包络线求调节时间得 ts 3.5n3.5 3.5 二阶
14、系统的时域指标二阶系统的时域指标欠阻尼二阶系统的欠阻尼二阶系统的ts取取sin项为项为1,则,则h(t)=1e-nt取误差带为取误差带为=0.050.05,则有则有e-nt=0.05由此解出由此解出t ts s=ln20/1-2nn3.53.5 3.5 二阶系统的时域指标二阶系统的时域指标K(t)=Ae-at零极点分布图:零极点分布图:(s)=传递函数:传递函数:AS+a0-aj0 运动模态运动模态13.5 3.5 二阶系统的时域指标二阶系统的时域指标K(t)=Asin(bt+K(t)=Asin(bt+)零极点分布图:零极点分布图:t(s)=传递函数:传递函数:A1s+B1 S2+b2 运动模
15、态运动模态30jb03.5 3.5 二阶系统的时域指标二阶系统的时域指标K(t)=Aeatsin(bt+)零极点分布图:零极点分布图:t(s)=传递函数传递函数:A1s+B1(S-a)2+b20ajb0 运动模态运动模态4 43.5 3.5 二阶系统的时域指标二阶系统的时域指标K(t)=Aeat零极点分布图:零极点分布图:t(s)=传递函数:传递函数:AS-a0aj0 运动模态运动模态5 53.5 3.5 二阶系统的时域指标二阶系统的时域指标运动模态总结运动模态总结 j0j0j0j0j03.5 3.5 二阶系统的时域指标二阶系统的时域指标零点对过阻尼二阶系统的影响零点对过阻尼二阶系统的影响 j
16、0%=33%3.5 3.5 二阶系统的时域指标二阶系统的时域指标 零点对欠阻尼二阶系统的影响零点对欠阻尼二阶系统的影响 j03.5 3.5 二阶系统的时域指标二阶系统的时域指标附加极点对系统的影响附加极点对系统的影响j0j0j0j0结论结论1:增加极点是削弱了阻尼增加极点是削弱了阻尼 还是增加了阻尼?还是增加了阻尼?结论结论2:增加的极点越靠近原点增加的极点越靠近原点越怎样?越怎样?3.5 3.5 二阶系统的时域指标二阶系统的时域指标 第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应
17、3.5 二阶系统的时域指标3.6 3.6 高阶系统高阶系统3.7 误差分析高阶系统高阶系统(s2+2s+5)(s+6)301(s)=(s2+2s+5)52(s)=增加极点对增加极点对有有何何影响?影响?主导极点主导极点%=19.1%ts=3.89s%=20.8%ts=3.74s3.6 3.6 高阶系统高阶系统偶极子偶极子1=(s+2)2+42202=(s+2)2+42(s+2)(s+3)1203=(s+2)2+42(s+2)(s+3)3.31(s+2)2+4.52结论结论结论结论1 1:增加极点有何影:增加极点有何影:增加极点有何影:增加极点有何影响?响?响?响?结论结论2:偶极子有何作用?:
18、偶极子有何作用?4=(s+2)(s+3)63.6 3.6 高阶系统高阶系统 第3章 线性系统的时域分析 3.1 自动控制系统时域响应的基本概念3.2 自动控制系统的稳定性和代数稳定判据3.3 一阶系统的阶跃响应3.4 二阶系统的阶跃响应3.5 二阶系统的时域指标3.6 高阶系统3.7 3.7 误差分析误差分析 3.7 误差分析1 稳态误差的概念 2 稳态误差的计算3 稳态误差系数 4 减小稳态误差的方法 3.7 误差分析1 稳态误差的概念误差误差定义定义 某个量和其期望值之间的差,或某两个量之间的差。稳态误差 就是误差信号 当 时的值2 稳态误差的计算 知道了误差 的拉氏变换 ,则利用终值定理
19、,有 误差分析误差分析1 误差定义误差定义G(s)H(s)R(s)E(s)C(s)B(s)输输入入端定义:端定义:E(s)=R(s)-B(s)=R(s)-C(s)H(s)G(s)H(s)R(s)E(s)C(s)H(s)1R(s)输输出出端定义:端定义:E(s)=C希希-C实实=-C(s)R(s)H(s)G(s)R(s)E(s)C(s)C(s)E(s)=R(s)-C(s)G1(s)H(s)R(s)C(s)G2(s)N(s)En(s)=C希希-C实实=Cn(s)总误差怎么求?总误差怎么求?2 例题例题求图示系统的稳态误差求图示系统的稳态误差ess。2R(s)C(s)N(s)0.2s+11s(s+1
20、)2其中其中 r(t)=t,n(t)=-1(t)解:解:令令n(t)=0,n(t)=0,=s(s+1)(0.2s+1)+40.5s(s+1)(0.2s+1)s2.1因为系统稳定,所以因为系统稳定,所以essr=limsEr(s)=s081令令r(t)=0,En(s)=-Cn(s)=s(s+1)(0.2s+1)+4 2(0.2s+1)s.1essn=limsEn(s)=21s0总误差总误差ess=essr+essness=8121+85=设开环传递函数设开环传递函数k (is+1)i=1 ms (Tjs+1)j=1n-G(s)H(s)=s表示开环有表示开环有个个极点在坐标原点极点在坐标原点k为开
21、环增为开环增益益称为称为型系统型系统称为称为型系统型系统称为称为0 0型系统型系统称为称为型系统型系统=0=1=1=2=2=3=33 3 系统型别系统型别典型输入下的稳态误差与静态误差系数典型输入下的稳态误差与静态误差系数G(s)H(s)R(s)E(s)C(s)E(s)=R(s)1+G(s)H(s)1若系统稳定若系统稳定,则可用终值定理求则可用终值定理求essess=lim s1+ksG0H0R(s)0sR(s)=R/sr(t)=R1(t)ess=1+ksRlim0sr(t)=RtR(s)=R/s2ess=sRlim0sksr(t)=Rt2/2R(s)=R/s3ess=s2Rlim0sks 3.7 误差分析取不同的取不同的 r(t)=R1(t)ess=1+ksRlim0sr(t)=Rtess=sRlim0sksr(t)=Rt2/2ess=s2Rlim0sks型型0型型型型R1(t)R1+kR kR kRt0 00Rt2/2R1(t)RtRt2/2kkk000小结:小结:123Kp=?Kv=?Ka=?非单位反馈怎么办?非单位反馈怎么办?3.7 误差分析The End