资源描述
晶格振动对晶体的许多性质有影响,例如,晶格振动对晶体的许多性质有影响,例如,固体的比热、热膨胀、热导等直接与晶格的固体的比热、热膨胀、热导等直接与晶格的振动有关。振动有关。设:原胞中只含有一个原子,设:原胞中只含有一个原子,整个原子平面整个原子平面作同位相运动。作同位相运动。可以有三种振动波,一个纵向振动波,两个横可以有三种振动波,一个纵向振动波,两个横向振动波向振动波.1.3 晶格振动晶格振动1.3.1 一维原子链的的振动一维原子链的的振动1.3.2 晶体振动的量子化晶体振动的量子化1.3.3 确定晶格振动谱的实验确定晶格振动谱的实验 s-1 s s+1 s+2 s+3 s+4aK或或qK或或q一、一维单原子晶格的线性振动一、一维单原子晶格的线性振动 1.3.1 一维原子链的振动一维原子链的振动条件条件:每个原子都具有相同的质量每个原子都具有相同的质量m;晶格常数(平衡时原子间距)为晶格常数(平衡时原子间距)为a;热运动使原子离开平衡位置热运动使原子离开平衡位置x。n-2 n-1 n n+1 n+2 n+3 xn-2 xn-1 xn xn+1 xn+2 xn+3设:原子间的作用力是和位移成正比,但方向相反设:原子间的作用力是和位移成正比,但方向相反的弹性力;的弹性力;两个最近邻原子间才有作用力两个最近邻原子间才有作用力-短程弹性力。短程弹性力。xn表示第表示第n个原子离开平衡位置的位移,第个原子离开平衡位置的位移,第n个原子相个原子相对第对第n+1个原子间的位移是:个原子间的位移是:a+xn xn+1-a=xn xn+1同理:第同理:第n个原子相对第个原子相对第n-1个原子间的位移是:个原子间的位移是:xn xn-1第第n个原子受第个原子受第n+1个原子的作用力个原子的作用力:Fn,n+1=-ks(xn-xn+1)第第n个原子受第个原子受第n-1个原子的作用力个原子的作用力:Fn,,n-1=-ks(xn-xn-1)则第则第n个原子所受原子的总力为:个原子所受原子的总力为:F=Fn,n+1+Fn,,n-1 得:得:F=ks(xn+1+xn-1-2xn)1.原子间的作用力服从虎克定律原子间的作用力服从虎克定律第第n个原子运动方程:个原子运动方程:md2xn/dt2=ks(xn+1+xn-1-2xn)2.原子间的作用力服从牛顿定律原子间的作用力服从牛顿定律晶格中所有原子作简谐振动(或具有前进波的形式):晶格中所有原子作简谐振动(或具有前进波的形式):xn=Aexpi(t-naq)、xn=Ae i(t-naq)、xn=Acos(t-naq)A:振幅;:振幅;:角频率;:角频率;n:1,2,3,4N;aq:相邻原子的位相差;:相邻原子的位相差;naq:第:第n个原子振动的位相差。个原子振动的位相差。此式说明所有原子以相同的频率和相同的振幅振动。此式说明所有原子以相同的频率和相同的振幅振动。0 1 2 3 43.原子振动方程原子振动方程如果第如果第n 个和个和n第个原子的位相之差:第个原子的位相之差:(qn a-qna)=2 s(s整数整数),即即 qn-qn=2 s/a时,时,原子因振动而产生的位移相等,因此晶格中各个原子原子因振动而产生的位移相等,因此晶格中各个原子间的振动相互间存在着固定的位相关系间的振动相互间存在着固定的位相关系。结果:在晶格中存在着角频率为结果:在晶格中存在着角频率为 的平面波的平面波-格波。格波。格波格波格波:格波:晶格中的所有原子以相同频率振动而形成的晶格中的所有原子以相同频率振动而形成的波,或某一个原子在平衡位置附近的振动是以波的波,或某一个原子在平衡位置附近的振动是以波的形式在晶体中传播形成的波。形式在晶体中传播形成的波。格波的特点:格波的特点:晶格中原子的振动;晶格中原子的振动;相邻原子间存在固定的位相。相邻原子间存在固定的位相。nn+2n-1n+1n-22/q=4.色散关系(晶格的振动谱)色散关系(晶格的振动谱)色散关系色散关系:频率和波矢的关系。频率和波矢的关系。(1)色散关系的数学表达式)色散关系的数学表达式将间谐振动方程:将间谐振动方程:xn=Ae i(t-naq)代入代入牛顿方程:牛顿方程:md2xn/dt2=ks(xn+1+xn-1-2xn)得得:2=1-cos(qa)2ks/m 或或 =2(ks/m)1/2|sin(qa/2)|上式为一维简单晶格中格波的色散关系(上式为一维简单晶格中格波的色散关系(-q的关系的关系),也为频谱关系。,也为频谱关系。-q的关系为周期函数。的关系为周期函数。根据函数的周期性,根据函数的周期性,|qa/2|/2即即|q|/a 在此范围以外的一切在此范围以外的一切q值,只是重复此范围的值,只是重复此范围的q值值所得频率。该范围的长度正好是倒格矢的长度所得频率。该范围的长度正好是倒格矢的长度(|-/a|+|/a|=2/a)。q的正负号说明:的正负号说明:正的正的q对应在某方向前进的波,负的对应在某方向前进的波,负的q对应于相反对应于相反方向进行的波。方向进行的波。色散关系为周期函数;色散关系为周期函数;当当q=0时,时,=0 当当sin(qa/2)=1时,时,有最大值,有最大值,且且 max=2(ks/m)1/2-2/a -/a 0 /a 2/a max max一维不喇菲格子振动的频谱一维不喇菲格子振动的频谱(2)频谱图)频谱图 有:有:(q)=(q+2 /a)说明波矢空间具有平移对称性说明波矢空间具有平移对称性,其周期为第一布里渊其周期为第一布里渊区边长区边长.由布里渊区边界由布里渊区边界 q=/a=2 /得:得:/2=a 满足形成驻波的条件满足形成驻波的条件q=/a正好是布里渊区边界,满足布拉格反射条件,正好是布里渊区边界,满足布拉格反射条件,反射波与入射波叠加形成驻波。反射波与入射波叠加形成驻波。入射波入射波反射波反射波一维单原子简谐振动的波函数:一维单原子简谐振动的波函数:xn=Aei t-qna将波矢将波矢:q=2 s/a+q(为任意整数)代入(为任意整数)代入得得 xn=Aei t-(2 s/a+q)na=Aei 2 sn ei(t-q na)ei 2 sn=1 xn=Aei t-qna=xn(3)分析讨论分析讨论 结论结论 如果如果q-q=2 s/a(为任意整数)这两种波矢对同一种原子所引(为任意整数)这两种波矢对同一种原子所引起的振动完全相同。起的振动完全相同。对应某一确定振动状态,可以有无限多个波矢对应某一确定振动状态,可以有无限多个波矢q,它们之间都相,它们之间都相差差2/a的整数倍。的整数倍。为了保证为了保证xn的单值性,把的单值性,把q值限制在值限制在(-/a,/a),其中其中a是该格子的是该格子的晶胞常数,该范围正好在第一布里渊区。晶胞常数,该范围正好在第一布里渊区。例如:例如:波矢波矢q=/2a原子的振动同样可以当作原子的振动同样可以当作波矢波矢q=5/2a的原子的振动(的原子的振动(q-q=2/a)。)。红线:红线:q=5/2a,=4a/5 两相邻原子振动两相邻原子振动的位相差是的位相差是2+/2。绿线:绿线:q=/2a,=4a 两相邻原子振动的位相两相邻原子振动的位相差是差是/2。格波与一般连续介质波的比较格波与一般连续介质波的比较 相同:相同:振动方程形式类似振动方程形式类似 区别:区别:1 连续介质波中连续介质波中x表示空间任意一点,而格波只取表示空间任意一点,而格波只取呈周期性排列的格点的位置;呈周期性排列的格点的位置;2 一个格波解表示所有原子同时做频率为一个格波解表示所有原子同时做频率为 的振的振动,不同原子间有位相差,相邻原子间位相差为动,不同原子间有位相差,相邻原子间位相差为aq.3 二者的重要区别在于波矢的涵义(二者的重要区别在于波矢的涵义(原子以原子以q 与与q振动一样振动一样,同一振动状态对应多个波矢,或多个,同一振动状态对应多个波矢,或多个波矢为同一振动状态)波矢为同一振动状态)。a2a 2n-2 2n-1 2n 2n+1 2n+2m M 运动方程运动方程:md2x2n+1/dt2=ks(x2n+2-2x2n+1+x2n)Md2x2n+2/dt2=ks(x2n+3+x2n+1-2x2n+2)1.色散关系(晶格振动谱)色散关系(晶格振动谱)双原子(双原子(M m)一维晶格一维晶格二二、一维双原子晶格的线性振动、一维双原子晶格的线性振动 方程的解是以角频率为方程的解是以角频率为 的简谐振动:的简谐振动:x2n+1=Aei t-q(2n+1)a x2n=Bei t-q2na x2n+2=Bei t-q(2n+2)a x2n+3=Aei t-q(2n+2)a由牛顿方程与简谐振动方程得:由牛顿方程与简谐振动方程得:-m 2A=ks(e iqa+e-iqa)B-2ksA -M 2B=ks(e iqa+e-iqa)A-2ksA上式可改写为:上式可改写为:(2ks-m 2)A-(2kscosqa)B=0 -(2kscosqa)A+(2ks-M 2)B=0若若A、B有异于零的解,则其行列式必须等于零,有异于零的解,则其行列式必须等于零,2ks-m 2 -2kscosqa -2kscosqa 2ks-M 2即即得:得:2=(m+M)m2+M2+2mMcos(2qa)1/2ks/mM说明说明:频率与波矢之间存在着两种不同的色散关系,频率与波矢之间存在着两种不同的色散关系,即对一维复式格子,可以存在两种独立的格波(对于即对一维复式格子,可以存在两种独立的格波(对于一维简单晶格,只能存在一种一维简单晶格,只能存在一种 格波)。两种不同的格格波)。两种不同的格波各有自己的色散关系:波各有自己的色散关系:12=(m+M)-m2+M2+2mMcos(2qa)1/2ks/mM 22=(m+M)+m2+M2+2mMcos(2qa)1/2ks/mM由于由于q值限制在值限制在(-/2a,/2a),2qa介于介于(-,)当当 2qa=(或或-)时时由 12=(m+M)-m2+M2+2mMcos(2qa)1/2ks/mM得 (1)最大最大=(2ks/M)1/2由 22=(m+M)+m2+M2+2mMcos(2qa)1/2ks/mM 得 (2)最小最小=(2ks/m)1/2因为因为 M m,有有(2)最小最小 (1)最大最大。(2)频率)频率 的取值的取值当当2qa=0时时由由 12=(m+M)-m2+M2+2mMcos(2qa)1/2ks/mM得得 (1)最小最小=0 由由 22=(m+M)+m2+M2+2mMcos(2qa)1/2ks/mM 得得 (2)最大最大=2ks(m+m)/mM 1/2设设 =mM/(m+M)(两种原子的折合质量)(两种原子的折合质量)则则 (2)最大最大=(2ks/)1/2 -/2a,0 /2a q (2ks/M)1/2(2ks/m)1/2(2ks/)1/2光频支光频支 2声频支声频支 1一维双原子复式格子的振动频谱一维双原子复式格子的振动频谱 复式格子两种格波的振动频率,复式格子两种格波的振动频率,1支支格波的频率格波的频率总比总比 2支支的低。的低。2支格波:光学支格波(光学波)可以用红外光光支格波:光学支格波(光学波)可以用红外光光来激发;来激发;1支支格波:声频支格波(声学波),可以用超声波格波:声频支格波(声学波),可以用超声波来激发。来激发。结结 论论 由由 (2ks-m 2)A-(2kscosqa)B=0得得 (A/B)1=(2kscosqa)/(2ks-m 12)因为因为 12 2ks/M,cos(qa)0得得 (A/B)1 0三、三、声学波和光学波声学波和光学波1.声学波声学波说明说明:相邻两种不同原子的振幅都有相同的正号或负相邻两种不同原子的振幅都有相同的正号或负号,即对于声学波,相邻原子都是沿着同一方向振动,号,即对于声学波,相邻原子都是沿着同一方向振动,当波长很长时,声学波实际上代表原胞质心的振动。当波长很长时,声学波实际上代表原胞质心的振动。声学波示意图声学波示意图由由 -(2kscosqa)A+(2ks-M 2)B=0 得得 (A/B)2=(2ks-M 2)/2kscos(qa)因因 22 2ks/m,cos(qa)0 得得 (A/B)2 0 2.光学波光学波说明说明:对于光学波,相邻两种不同原子的振动:对于光学波,相邻两种不同原子的振动方向是相反的。方向是相反的。当当q很小时,即波长很长的光学波(长光学波),很小时,即波长很长的光学波(长光学波),cos(qa)1,又又 22=2ks/,由由 -(2kscosqa)A+(2ks-M 2)B=0 得得 (A/B)2=-M/m mA+MB=0说明:说明:原胞的质心保持不动,由此也可以定性的看出,原胞的质心保持不动,由此也可以定性的看出,光学波代表原胞中两个原子的相对振动。光学波代表原胞中两个原子的相对振动。相邻原相邻原子的振子的振动方向动方向振动的振动的频率频率 长长 波波振动振动质点质点振动质点振动质点的质量的质量同号双同号双原子原子异号双异号双原子原子 声声 学学 波波相同相同慢慢原胞原胞 重重连续介质的弹连续介质的弹性波性波 光光 学学 波波相反相反快快异号异号原子原子相对相对振动振动 轻轻产生电产生电偶极矩,偶极矩,发射电发射电磁波磁波 声学波与光学波的比较声学波与光学波的比较说明:说明:带异性电荷的离子间的相对振动产生一定的带异性电荷的离子间的相对振动产生一定的电偶极矩,可以和电磁波相互作用。且只和波矢相电偶极矩,可以和电磁波相互作用。且只和波矢相同的格波相互作用,如果有与格波相同频率的电磁同的格波相互作用,如果有与格波相同频率的电磁波作用,发生共振。波作用,发生共振。-/2a 0 /2a q 光波光波=coq共振点共振点四、四、周期性边界条件(波恩周期性边界条件(波恩卡门边界条件)卡门边界条件)由振动由振动 波函数单值的要求,对波矢的取值范围进行了波函数单值的要求,对波矢的取值范围进行了限定限定:一维不喇菲格子,一维不喇菲格子,q介于介于(-/a,/a)之间之间;一维双原一维双原子的复式格子,子的复式格子,q介于介于(-/2a,/2a)之间之间.波恩和卡门把边界对内部原子的振动状态的影响考虑成波恩和卡门把边界对内部原子的振动状态的影响考虑成如下面所述的周期性边界条件模型(包含如下面所述的周期性边界条件模型(包含N个原胞的环个原胞的环状链作为有限链的模型)状链作为有限链的模型):包含有限数目的原子,保持所有原胞完全等价包含有限数目的原子,保持所有原胞完全等价。如果原胞数如果原胞数N很大使环半径很大,沿环的运动仍可以很大使环半径很大,沿环的运动仍可以看作是直线的运动。看作是直线的运动。和以前的区别:需考虑链的循环性。即原胞的标数增和以前的区别:需考虑链的循环性。即原胞的标数增加加N,振动情况必须复原。,振动情况必须复原。一维链的波恩一维链的波恩卡卡曼边界条件曼边界条件 xn=Aei t-qna xn+N=Aei t-q(n+N)a=Aei t-qna ei-qNa由于由于 xn=xn+N有有 ei-qNa=1即即 Nqa=2 h,(h为整数),或为整数),或q=2 h/Na q介于介于(-/a,/a)之间,或之间,或-/a q/a得得 -N/2 h N/2说明说明:h只能取由只能取由-N/2到到N/2,一共有,一共有N个不同的数值。个不同的数值。-N/2 h N/2,q是均匀取值。是均匀取值。由由N个原胞组成的链,个原胞组成的链,q可以取可以取N个不同的值,每个个不同的值,每个q对应着一个格波,共有对应着一个格波,共有N个不同的格波,个不同的格波,N是一维单是一维单原子链的自由度数,即得到链的全部振动模(或振动原子链的自由度数,即得到链的全部振动模(或振动状态数)。状态数)。同理:可得两种复式格子的同理:可得两种复式格子的q取值个数为取值个数为N.结论结论 原胞内原胞内含含原子原子 数数原胞原胞数数自由自由度数度数 q 数数格波数格波数晶体振动晶体振动模或模或(,q)数数声学波声学波数数(支支)光学波光学波数(支)数(支)单原子单原子链链1NNNN1 双原子双原子链链2N2NN2N11三维结三维结构构nN3nNN3nN33(n-1)晶格振动是晶体中诸原子(离子)集体在作振动,其晶格振动是晶体中诸原子(离子)集体在作振动,其结果表现为晶格中的格波。结果表现为晶格中的格波。一般而言,格波不一定是简谐波,但可以展成为简谐一般而言,格波不一定是简谐波,但可以展成为简谐平面波的线性叠加。平面波的线性叠加。一、声子概念的由来一、声子概念的由来 1.3.2 晶格振动的量子化晶格振动的量子化-声子声子当振动微弱时,即相当于简谐近似的情况,格波为简当振动微弱时,即相当于简谐近似的情况,格波为简谐波。此时,格波之间的相互作用可以忽略,可以认谐波。此时,格波之间的相互作用可以忽略,可以认为它们的存在是相互独立振动的模式。为它们的存在是相互独立振动的模式。每一独立模式对应一个振动态每一独立模式对应一个振动态(q)。晶格的周期性给予格波以一定的边界条件,使独立的晶格的周期性给予格波以一定的边界条件,使独立的模式也即独立的振动态是分立的。模式也即独立的振动态是分立的。可以用独立简谐振子的振动来表述格波的独立模式。可以用独立简谐振子的振动来表述格波的独立模式。声子声子-晶格振动中的独立简谐振子的能量量子。晶格振动中的独立简谐振子的能量量子。二二 、格波能量量子化、格波能量量子化1.三维晶格振动能量三维晶格振动能量原胞(原胞(N个)内含个)内含1个原子系统的三维晶格振动具有个原子系统的三维晶格振动具有3N个独立谐振子个独立谐振子;晶体中的格波是所有原子都参与的振动,含晶体中的格波是所有原子都参与的振动,含N个原胞个原胞的晶体振动能量为的晶体振动能量为3N个格波能量之和;个格波能量之和;在简谐近似下,每个格波是一个简谐振动,晶体总振在简谐近似下,每个格波是一个简谐振动,晶体总振动能量等于动能量等于3N个简谐振子的能量之和。个简谐振子的能量之和。谐振子的能量用量子力学处理时,每一个谐振子的谐振子的能量用量子力学处理时,每一个谐振子的能量能量 l为为:l=(n1+1/2)I,nl=0,1,2,则晶格总能量则晶格总能量E为:为:E=(n1+1/2)I2.格波能量量子化格波能量量子化说明:说明:晶格振动的能量是量子化的,晶格振动的能晶格振动的能量是量子化的,晶格振动的能量量子量量子 I称为声子。称为声子。三三、声子的性质、声子的性质1.声子的粒子性声子的粒子性光子光子-电磁波的能量量子。电磁波可以认为是光电磁波的能量量子。电磁波可以认为是光子流,光子携带电磁波的能量和动量子流,光子携带电磁波的能量和动量。声子声子-声子携带声波的能量和动量。若格波频率声子携带声波的能量和动量。若格波频率为为,波矢,波矢q为,则声子的能量为为,则声子的能量为 ,动量为,动量为q。声子和物质相互作用服从能量和动量守恒定律,如声子和物质相互作用服从能量和动量守恒定律,如同具有能量同具有能量 和动量和动量 q的粒子一样。的粒子一样。可以将格波与物质的互作用过程,理解为声子和可以将格波与物质的互作用过程,理解为声子和物质的碰撞过程,使问题大大简化,得出的结论物质的碰撞过程,使问题大大简化,得出的结论也正确。如,电子、光子、声子等。也正确。如,电子、光子、声子等。准粒子性的具体表现:声子的动量不确定,波矢准粒子性的具体表现:声子的动量不确定,波矢改变一个周期(倒格矢量)或倍数,代表同一振改变一个周期(倒格矢量)或倍数,代表同一振动状态,所以不是真正的动量;动状态,所以不是真正的动量;系统中声子的数目一般用统计方法进行计算,具系统中声子的数目一般用统计方法进行计算,具有能量为有能量为Ei的状态用出现的几率来表示。的状态用出现的几率来表示。2.声子的准粒子性声子的准粒子性3.声子概念的意义声子概念的意义1.3.3 确定晶格振动谱确定晶格振动谱(q)的实验方法的实验方法晶格的振动谱晶格的振动谱-格波的色散关系。格波的色散关系。确定晶格振动谱的意义确定晶格振动谱的意义-晶体的许多性质和函数晶体的许多性质和函数(q)有关。有关。测定的依据测定的依据-利用波和格波的相互作用。利用波和格波的相互作用。最重要的实验方法最重要的实验方法-中子的非弹性散射,即利用中中子的非弹性散射,即利用中子的德布洛依波与格波的相互作用。子的德布洛依波与格波的相互作用。其他实验方法其他实验方法-X射线衍射、光的散射等。射线衍射、光的散射等。本节介绍本节介绍-中子的非弹性散射(中子与原子核的作中子的非弹性散射(中子与原子核的作用)用)一束一束 中子流:动量中子流:动量p、能量、能量E=p2/2Mn。样品(与原子核之间有较强的相互作用,容易样品(与原子核之间有较强的相互作用,容易 穿过晶体)穿过晶体)一束一束 中子流:动量中子流:动量p、能量、能量E=p2/2Mn。入入射射射射出出格波振动因起中子的非弹性散射(吸收或发格波振动因起中子的非弹性散射(吸收或发射声子的过程),该过程满足能量守恒和动射声子的过程),该过程满足能量守恒和动量守恒。量守恒。一、实验原理一、实验原理 p2/2Mn p2/2Mn=(q)p p=q+Kn多出多出Kn项的说明:动量平移倒格子矢量,格波的项的说明:动量平移倒格子矢量,格波的运动状态不变。运动状态不变。发射声子的过程发射声子的过程 吸收声子的过程吸收声子的过程 固定入射中子流的动量和能量,测量不同散射中子流固定入射中子流的动量和能量,测量不同散射中子流的动量和能量。的动量和能量。二、实验过程二、实验过程 2dh1h2h3sin =n 中子流中子流单色器单色器准准直直器器样品样品准直器准直器探测器探测器分分析析器器 三轴中子谱仪结构三轴中子谱仪结构p pp p中子源:反应堆中产生出来的慢中子流。中子源:反应堆中产生出来的慢中子流。单色器:利用单晶的布拉格反射产生单色(单色器:利用单晶的布拉格反射产生单色(的的确定确定)的中子流。的中子流。准直器:选择入射、散射中子流的方向准直器:选择入射、散射中子流的方向,确定确定、。分析器:利用单晶的布拉格反射来决定散射中子流的分析器:利用单晶的布拉格反射来决定散射中子流的动量。动量。(1,0,0)60 50 40 30 20 10声声子子的的能能量量(mev)LOTOLATA(1,1,0)(1/2,1/2,1/2)T:横;:横;O:光学波;:光学波;L:纵;:纵;A:声学波。:声学波。硅的格波谱硅的格波谱 晶体中的原子在平衡位置附近的微振动具有波的形式(称为晶体中的原子在平衡位置附近的微振动具有波的形式(称为格波)。格波)。由于原子间的相互作用力,在晶体中产生格波,原子间的作由于原子间的相互作用力,在晶体中产生格波,原子间的作用力符合虎克定律时,格波为简谐波。格波间不发生相互用力符合虎克定律时,格波为简谐波。格波间不发生相互作用,独立存在。作用,独立存在。晶体中所有格波都可用倒格子空间中的第一布里渊区内的晶体中所有格波都可用倒格子空间中的第一布里渊区内的波矢来描述。波矢来描述。声学波与光学波的区别。前者是相邻原子的振动方向相同,声学波与光学波的区别。前者是相邻原子的振动方向相同,波长很长时,格波为晶胞中心在振动,可以看作连续介质波长很长时,格波为晶胞中心在振动,可以看作连续介质的弹性波;后者是相邻原子的振动方向相反,波长很长时,的弹性波;后者是相邻原子的振动方向相反,波长很长时,晶胞中心不动,晶胞中的原子作相对振动。晶胞中心不动,晶胞中的原子作相对振动。由于边界条件,使格波发生分立,若晶体中含有个由于边界条件,使格波发生分立,若晶体中含有个N原胞,原胞,每个原胞含有每个原胞含有n个原子,则共有个原子,则共有3nN个格波,其中个格波,其中3支是声学支是声学波,波,3(n-1)支是光学波,每支包含支是光学波,每支包含N个格波。个格波。小小 结结 晶晶格格振振动动的的能能量量是是量量子子化化的的,晶晶格格振振动动的的量量子子单单元元称称作作声声子子,声声子子具具有有能能量量,与与光光子子的的区区别别是是不不具具有有真真正正的动量,这是由格波的特性决定的。的动量,这是由格波的特性决定的。晶格振动的色散关系可以进行测定。晶格振动的色散关系可以进行测定。
展开阅读全文