1、 人教版九年级数学知识点总结 等腰三角形的判定(方法) 1.有两条边相等的三角形是等腰三角形。 2.判定定理:假如一个三角形有两个角相等,那么这个三角形是等腰三角形(简称:等角对等边)。 角平分线:把一个角平分的射线叫该角的角平分线。 定义中有几个要点要留意一下的,(学习方法),就是角的角平分线是一条射线,不是线段也不是直线,许多时,在题目中会消失直线,这是角平分线的对称轴才会用直线的,这也涉及到轨迹的问题,一个角个角平分线就是到角两边距离相等的点 性质定理:角平分线上的点到该角两边的距离相等 判定定理:到角的两边距离相等的点在该角的角平分线上 标准差与方差 极差是什么:一组数据中数据与最小数
2、据的差叫做极差,即极差=值-最小值。 计算器求标准差与方差的一般步骤: 1.翻开计算器,按“ON”键,按“MODE”“2”进入统计(SD)状态。 2.在开头数据输入之前,请务必按“SHIFT”“CLR”“1”“=”键去除统计存储器。 3.输入数据:按数字键输入数值,然后按“M+”键,就能完成一个数据的输入。假如想对此输入同样的数据时,还可在步骤3后按“SHIET”“;”,后输入该数据消失的频数,再按“M+”键。 4.当全部的数据全部输入完毕后,按“SHIFT”“2”,选择的是“标准差”,就可以得到所求数据的标准差; 5.标准差的平方就是方差。 初三数学下册学问点整理 1.解直角三角形 1.1.
3、锐角三角函数 锐角a的正弦、余弦和正切统称a的三角函数。 假如a是RtABC的一个锐角,则有 1.2.锐角三角函数的计算 1.3.解直角三角形 在直角三角形中,由已知的一些边、角,求出另一些边、角的过程,叫做解直角三角形。 2.直线与圆的位置关系 2.1.直线与圆的位置关系 当直线与圆有两个公共点时,叫做直线与圆相交;当直线与圆有公共点时,叫做直线与圆相切,公共点叫做切点;当直线与圆没有公共点时,叫做直线与圆相离。 直线与圆的位置关系有以下定理: 直线与圆相切的判定定理: 经过半径的外端并且垂直这条半径的直线是圆的切线。 圆的切线性质: 经过切点的半径垂直于圆的切线。 2.2.切线长定理 从圆
4、外一点作圆的切线,通常我们把圆外这一点到切点间的线段的长叫做切线长。 切线长定理:过圆外一点所作的圆的两条切线长相等。 2.3.三角形的内切圆 与三角形三边都相切的圆叫做三角形的内切圆,圆心叫做三角形的内心,三角形叫做圆的外切三角形。三角形的内心是三角形的三条角平分线的交点。 3.三视图与外表绽开图 3.1.投影 物体在光线的照耀下,在某个平面内形成的影子叫做投影。光线叫做投影线,投影所在的平面叫做投影面。由平行的投射线所形成的投射叫做平行投影。 可以把太阳光线、探照灯的光线看成平行光线,它们所形成的投影就是平行投影。 3.2.简洁几何体的三视图 物体在正投影面上的正投影叫做主视图,在水平投影
5、面上的正投影叫做俯视图,在侧投影面上的正投影叫做左视图。 主视图、左视图和俯视图合称三视图。 产生主视图的投影线方向也叫做主视方向。 3.3.由三视图描述几何体 三视图不仅反映了物体的外形,而且反映了各个方向的尺寸大小。 3.4.简洁几何体的外表绽开图 将几何体沿着某些棱“剪开”,并使各个面连在一起,铺平所得到的平面图形称为几何体的外表绽开图。 圆柱可以看做由一个矩形ABCD绕它的一条边BC旋转一周,其余各边所成的面围成的几何体。AB、CD旋转所成的面就是圆柱的两个底面,是两个半径一样的圆。AD旋转所成的面就是圆柱的侧面,AD不管转动到哪个位置,都是圆柱的母线。 圆锥可以看做将一根直角三角形A
6、CB绕它的一条直角边(AC)旋转一周,它的其余各边所成的面围成的一个几何体。直角边BC旋转所成的面就是圆锥的底面,斜边AB旋转所成的面就是圆锥的侧面,斜边AB不管转动到哪个位置,都叫做圆锥的母线。 初三(数学学习方法)技巧 在学习新概念、新运算时,教师们总是通过已有学问自然而然过渡到新学问,水到渠成,亦即所谓“温故而知新”。因此说,数学是一门能自学的学科,自学成才最典型的例子就是数学家华罗庚。 我们在课堂上听教师讲解,不光是学习新学问,更重要的是潜移默化教师的那种数学思维习惯,渐渐地培育起自己对数学的一种悟性。我去佛山一中开家长会时,一中校长的一番话使我感受良多。他说:我是教物理的,学生物理学
7、得好,不是我教出来的,而是他们自己悟出来的。固然,校长是虚心的,但他说明白一个道理,学生不能被动地学习,而应主动地学习。一个班里几十个学生,同一个教师教,差异那么大,这就是学习主动性问题了。 自学力量越强,悟性就越高。随着年龄的增长,同学们的依靠性应不断减弱,而自学力量则应不断增加。因此,要养成预习的习惯。在教师讲新课前,能不能运用自己所学过的已把握的旧学问去预习新课,结合新课中的新规定去分析、理解新的学习内容。由于数学学问的无冲突性,你所学过的数学学问永久都是有用的,都是正确的,数学的进一步学习只是加深拓广而已。因此,以前的数学学得扎实,就为以后的进取奠定了根底,就不难自学新课。同时,在预习新课时,遇到什么自己解决不了的问题,带着问题去听教师讲解新课,收获之大是不言而喻的。有些同学为什么听教师讲新课时总有一种似懂非懂的感觉,或者是“一听就懂、一做就错”,就是由于没有预习,没有带着问题学,没有将“要我学”真正变为“我要学”,力求把学问变为自己的。学来学去,学问还是别人的。检验数学学得好不好的标准就是会不会解题。听懂并记忆有关的定义、法则、公式、定理,只是学好数学的必要条件,能独立解题、解对题才是学好数学的标志。