收藏 分销(赏)

微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx

上传人:人****来 文档编号:4141429 上传时间:2024-08-01 格式:PPTX 页数:39 大小:2MB
下载 相关 举报
微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx_第1页
第1页 / 共39页
微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx_第2页
第2页 / 共39页
微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx_第3页
第3页 / 共39页
微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx_第4页
第4页 / 共39页
微分形式的基本方程流体力学省公共课一等奖全国赛课获奖课件.pptx_第5页
第5页 / 共39页
点击查看更多>>
资源描述

1、 B3.1 B3.1 微分形式质量守恒方程微分形式质量守恒方程B3.1.1 B3.1.1 流体运动连续性原理流体运动连续性原理 不可压缩流体流进控制体质量应等于流出控制体质量,不可压缩流体流进控制体质量应等于流出控制体质量,称其为流体运动连续性原理。称其为流体运动连续性原理。17世纪,哈维发觉人体血液循环理论世纪,哈维发觉人体血液循环理论 质量守恒在易变形流体中表达质量守恒在易变形流体中表达流动连续性流动连续性。历史上对连续性认识历史上对连续性认识古古 代,代,漏壶、水流计时漏壶、水流计时16世纪,达世纪,达芬奇指出河水流速与河横截面积成反比芬奇指出河水流速与河横截面积成反比1818世纪,达朗

2、贝尔推导不可压缩流体微分形式连续性方程世纪,达朗贝尔推导不可压缩流体微分形式连续性方程B3.1.1 流体运动连续性原理流体运动连续性原理(2-1)第1页B3.1.1 B3.1.1 流体运动连续性流体运动连续性(2-2)(2-2)1717世纪哈维:血液循环理论世纪哈维:血液循环理论 解剖发觉解剖发觉:从心脏到动脉末端血液单向:从心脏到动脉末端血液单向 流动,从静脉末端到心脏也流动,从静脉末端到心脏也 是单向流动是单向流动 定量测量定量测量:每小时流出心脏血液:每小时流出心脏血液245kg 大胆预言大胆预言:从动脉到静脉再回心脏:从动脉到静脉再回心脏 45年后发觉年后发觉:毛细血管存在毛细血管存在

3、血液循环理论血液循环理论流体连续性原理流体连续性原理胜利胜利血液循环图血液循环图第2页B3.1.2 B3.1.2 微分形式连续性方程微分形式连续性方程 x,y,z方向净流出质量为方向净流出质量为因密度改变引发质量降低为因密度改变引发质量降低为由由质量守恒定律质量守恒定律单位时间单位体积内单位时间单位体积内边长为边长为 ,长方体控制体元,长方体控制体元,内内x方向净流出质量方向净流出质量B3.1.2 微分形式连续性方程微分形式连续性方程(2-1)第3页B3.1.2 B3.1.2 微分形式连续性方程微分形式连续性方程(2-2)(2-2)用场量公式并利用质点导数概念,微分形式用场量公式并利用质点导数

4、概念,微分形式连续性方程连续性方程为为或改写为:或改写为:左左边边代代表表一一点点邻邻域域内内流流体体体体积积相相对对膨膨胀胀速速率率,右右边边代代表表密密度度相相对降低率。连续性方程适合用于任何同种流体。对降低率。连续性方程适合用于任何同种流体。不可压缩流体不可压缩流体连续性方程连续性方程第4页 例例B3.1.2B3.1.2 不可压缩流动连续性方程不可压缩流动连续性方程 已知:已知:不可压缩流体平面流动不可压缩流体平面流动(C为常数)为常数)求:求:v 解:解:由不可压缩流动连续性方程二维形式由不可压缩流动连续性方程二维形式可得可得(B3.1.113.1.11)当当f(x)=0,表示位于原点

5、点涡流动;,表示位于原点点涡流动;当当f(x)=U,表示点涡流叠加,表示点涡流叠加y方向速度为方向速度为U均流;均流;讨论:讨论:本例说明对不可压缩流动,任一点各速度分量不能是任意本例说明对不可压缩流动,任一点各速度分量不能是任意,而是而是受到(受到(B3.1.113.1.11)式制约。)式制约。第5页B3.2 B3.2 作用在流体元上力作用在流体元上力B3.2.1 B3.2.1 体积力和表面力体积力和表面力1.1.体积力体积力长程力长程力穿越空间作用穿越空间作用到流体元上到流体元上万有引力万有引力电磁力电磁力惯性力惯性力与流体元体与流体元体积成正比积成正比体积力体积力单位质量流体上体积力单位

6、质量流体上体积力 单位体积流体上体积力单位体积流体上体积力 B3.2.1 体积力和表面力体积力和表面力(2-1)第6页B3.2.1 B3.2.1 体积力和表面力体积力和表面力(2-2)(2-2)2.2.表面力表面力短程力短程力经过接触面经过接触面作用作用压强压强粘性切应力粘性切应力与表面面积与表面面积和方位相关和方位相关表面力表面力表面力定义:作用在单位平面面积元上短程力。表面力定义:作用在单位平面面积元上短程力。n面积元外法线单位矢面积元外法线单位矢n面积元内法线单位矢面积元内法线单位矢(注意:(注意:和和 不一定与不一定与 垂直)垂直)第7页B3.2.2 B3.2.2 重力场重力场在直角坐

7、标系重力场中在直角坐标系重力场中称为重力势,代表单位质量流体含有重力势能称为重力势,代表单位质量流体含有重力势能B3.2.2 重力场重力场第8页B3.2.3 B3.2.3 应力场应力场1.1.运动粘性流体中应力状态运动粘性流体中应力状态一点表面应一点表面应力力用过该点三个坐标用过该点三个坐标面上三组表面力分面上三组表面力分量唯一确定量唯一确定应力状态应力状态与作用力大小、方向、作用面方位相关与作用力大小、方向、作用面方位相关上应力分量为上应力分量为上应力分量为上应力分量为上应力分量为上应力分量为B3.2.3 应力场应力场(4-1)应力矩阵应力矩阵第9页作用在任意方位作用在任意方位面元上面元上表

8、面应力表面应力表面应力分量式表面应力分量式B3.2.3 应力场应力场(4-2)作用在作用在外法矢沿外法矢沿x轴向面积元轴向面积元dAx上三个应力分量如图示上三个应力分量如图示第10页B3.2.3 B3.2.3 应力场应力场(4-3)(4-3)2.2.静止流体中应力状态静止流体中应力状态静止流体应力状态静止流体应力状态结论:静止流体中一点应力状态只用一个标量静压强结论:静止流体中一点应力状态只用一个标量静压强p p表示表示.只有法向应力只有法向应力无切应力无切应力第11页B3.2.3 B3.2.3 应力场应力场(4-4)(4-4)3.3.应力惯用表示式应力惯用表示式运动粘性流体中运动粘性流体中(

9、平均平均)压强压强在法向应力中把压强分离出来在法向应力中把压强分离出来为附加法向应力分量(与流体元线应变率相关)为附加法向应力分量(与流体元线应变率相关)压强矩阵压强矩阵 偏应力矩阵偏应力矩阵 应力矩阵表示为应力矩阵表示为 第12页 例例B3.2.3B3.2.3 平面线性剪切流中应力状态平面线性剪切流中应力状态 已知:已知:平面线性剪切流平面线性剪切流求:求:应力状态应力状态 解解:附加法向应力附加法向应力切应力切应力讨论:讨论:附加法向应力与该方向线应变率相关,平面线性剪切流中任一点附加法向应力与该方向线应变率相关,平面线性剪切流中任一点处于处于x、y方向线应变率均为零,所以对应附加法向应力

10、也均为零,方向线应变率均为零,所以对应附加法向应力也均为零,x,y方向法向应力均等于平衡压强;粘性切应力则在全流场保持方向法向应力均等于平衡压强;粘性切应力则在全流场保持常数。常数。法向应力法向应力(k为常数)为常数)第13页 例例B3.2.3AB3.2.3A 刚体旋转流动刚体旋转流动:纯旋转纯旋转(2-(2-1)1)已知:已知:二维不可压缩平面流场为二维不可压缩平面流场为求:求:试分析该流场中试分析该流场中应力状态应力状态(k为常数)为常数)解:解:附加法向应力附加法向应力第14页流体中任一点法向流体中任一点法向应力为应力为 切向应力为切向应力为讨论:讨论:(1 1)线应变率处处为零,附加法

11、向应力为零,全流场)线应变率处处为零,附加法向应力为零,全流场 法向应力均等于平衡压强。法向应力均等于平衡压强。(2 2)角变形率也处处为零,全流场粘性切应力为)角变形率也处处为零,全流场粘性切应力为零,流体和刚体一样作定轴旋转运动。零,流体和刚体一样作定轴旋转运动。例例B3.2.3AB3.2.3A 刚体旋转流动刚体旋转流动:纯旋转纯旋转(2-2)(2-2)第15页B3.3 B3.3 微分形式动量方程微分形式动量方程按牛顿第二定律,长方体流体元按牛顿第二定律,长方体流体元运动方程运动方程为为 各面元上各面元上 x 方向表面应力分方向表面应力分量如图示。量如图示。B3.3 微分形式动量方程微分形

12、式动量方程(2-1)表面力协力表面力协力 dFsx 由应力梯度造成由应力梯度造成第16页x方向体积力分量为方向体积力分量为 将将dFsx和和dFbx代入运动方程,并利用代入运动方程,并利用 和质点导数和质点导数概念,可化为概念,可化为 同理可得同理可得 上式称为上式称为粘性流体运动普通微分方程粘性流体运动普通微分方程,适合用于任何流体。,适合用于任何流体。B3.3 微分形式动量方程微分形式动量方程(2-2)第17页B3.4 B3.4 纳维斯托克斯方程纳维斯托克斯方程 斯托克斯假设:斯托克斯假设:1.1.将牛顿粘性定律从一维推广到三维;将牛顿粘性定律从一维推广到三维;2.2.流体各向同性;流体各

13、向同性;3.3.静止时法向应力等于静压强。静止时法向应力等于静压强。均代入粘性流体运动普通微分方程均代入粘性流体运动普通微分方程对牛顿流体(对牛顿流体(常数)常数)B3.4 纳维斯托克斯方程纳维斯托克斯方程(4-1)不可压缩条件(不可压缩条件(常数)常数)第18页B3.4 B3.4 纳维斯托克斯方程纳维斯托克斯方程(4-2)(4-2)可得均质不可压缩牛顿流体可得均质不可压缩牛顿流体纳维纳维-斯托克斯方程斯托克斯方程(NS S方程方程)NS S方程适用条件是:方程适用条件是:常数常数常数常数,第19页B3.4 B3.4 纳维斯托克斯方程纳维斯托克斯方程(4-3)(4-3)NS S方程矢量式为方程

14、矢量式为N NS S方程方程意义和求解:意义和求解:物理意义是:物理意义是:惯性力与体积力、压力、粘性力平衡惯性力与体积力、压力、粘性力平衡 u、v、w、p,方程组是封闭;,方程组是封闭;加上连续性方程加上连续性方程 ,四个方程求解四个未知数,四个方程求解四个未知数 在边界条件较简单时可求解析解在边界条件较简单时可求解析解;在边界条件较复杂时在边界条件较复杂时可求数值解可求数值解;对不一样流动专题可作不一样程度简化(见专题篇)。对不一样流动专题可作不一样程度简化(见专题篇)。第20页B3.4 B3.4 纳维斯托克斯方程纳维斯托克斯方程(4-4)(4-4)N NS S方程方程平衡方程平衡方程相对

15、平衡方程相对平衡方程欧拉方程欧拉方程惯性力惯性力体积力体积力粘性力粘性力 压力压力00第21页B3.5 B3.5 边界条件与初始条件边界条件与初始条件 1.1.常见边界条件常见边界条件(1)(1)固体壁面固体壁面粘性流体:不滑移条件粘性流体:不滑移条件(图图a)a)无粘性流体:法向速度连续无粘性流体:法向速度连续(图图b)b)v=v固 vn=v n固 (2)(2)外流无穷远条件外流无穷远条件v=v,p=p B3.5 边界条件与初始条件边界条件与初始条件(2-1)第22页(3)(3)内流出入口条件内流出入口条件v=vin(out),p=p in(out)(4)(4)自由面条件自由面条件2.2.初

16、始条件初始条件定常流时无初始条件定常流时无初始条件不定常流时给出某时刻参数值:不定常流时给出某时刻参数值:v(t0),p(t0),(t0)等等B3.5 边界条件与初始条件边界条件与初始条件(2-2)第23页 例例B3.5.1AB3.5.1A 沿斜坡重力粘性层流沿斜坡重力粘性层流(3-1)(3-1)已知:已知:不可压牛顿流体在重力作用下沿斜坡不可压牛顿流体在重力作用下沿斜坡()作定常层流流动,流层作定常层流流动,流层深深h,自由面上为大气压(,自由面上为大气压(p0 0)。)。(a(a)求:求:(1)速度分布速度分布 (2)压强分布压强分布 (3)切应力分布切应力分布 (4)流量流量 解解:在图

17、示坐标系中连续性方程在图示坐标系中连续性方程和和NS S方程方程为为(b(b)(c(c)第24页 例例B3.5.1AB3.5.1A 沿斜坡重力粘性层流沿斜坡重力粘性层流(3-2)(3-2)因因v0,由(,由(a a)式)式由(由(c c)式)式由边界条件由边界条件(1):y=h,p=0,C(x)=,压强分布为压强分布为且且,由,由(b)式式积分两次积分两次第25页流量流量 速度分布为速度分布为讨论:讨论:压强和切应力为线性分布,速度分布为压强和切应力为线性分布,速度分布为y二次函数,流量为二次函数,流量为h 三三次函数。次函数。切应力分布切应力分布 例例B3.5.1AB3.5.1A 沿斜坡重力

18、粘性层流沿斜坡重力粘性层流(3-3)(3-3)由边界条件由边界条件(2):y=0,u=0 可得可得 C2=0由边界条件由边界条件(3):y=b,第26页B3.6B3.6压强场压强场 由由N NS S方程方程粘性流动粘性流动绝对平衡绝对平衡相对平衡相对平衡无粘性流动无粘性流动B3.6 压强场压强场 第27页B3.6.1 B3.6.1 静止重力流体中压强分布静止重力流体中压强分布 均质静止流体均质静止流体 =常数,常数,uvw0在重力场中在重力场中上式说明:上式说明:z方向压强梯度由单位体积流体重力决定。方向压强梯度由单位体积流体重力决定。积分可得积分可得B3.6.1 静止重力流体中压强分布静止重

19、力流体中压强分布(3-1)1.1.压强分布普通表示式压强分布普通表示式由由N-SN-S方程可得方程可得第28页B3.6.1 B3.6.1 静止重力流体中压强分布静止重力流体中压强分布(3-2)(3-2)2.2.含有自由液面重力液体含有自由液面重力液体 压强公式压强公式为自由面上压强,为自由面上压强,h为为淹深淹深(1)(1)在垂直方向压强与淹深成线性关系在垂直方向压强与淹深成线性关系 (2)(2)在水平方向压强保持常数在水平方向压强保持常数 第29页B3.6.1 B3.6.1 静止重力流体中压强分布静止重力流体中压强分布(3-3)(3-3)3.3.等压面等压面在连通同种流体中等压强面称为在连通

20、同种流体中等压强面称为等压面等压面。在静止重力流体中等压面为水平面在静止重力流体中等压面为水平面h常数常数右图中右图中3 33 3 为等压面为等压面非等非等压面压面1 11 1 为不连通液体为不连通液体2 22 2 为不一样液为不一样液体体第30页 例例B3.6.1B3.6.1 静压强分布图静压强分布图第31页B3.6.2 压强计示方式与单位压强计示方式与单位1.压强计示方式压强计示方式习惯上取习惯上取压强基准压强基准真空度真空度 完全真空完全真空绝对压强绝对压强表压强表压强大气压强大气压强B3.6.2 压强计算方法与单位压强计算方法与单位(2-1)由压强公式由压强公式p0提供压强基准提供压强

21、基准第32页B3.6.2 B3.6.2 压强计算方法与单位压强计算方法与单位(2-2)(2-2)2.压强单位压强单位标准大气压标准大气压atm(标准国际大气模型标准国际大气模型)液柱高:液柱高:国际单位制(国际单位制(SI):帕斯卡):帕斯卡Pa 毫米汞柱毫米汞柱mmHg(血压计)(血压计)米水柱米水柱mH2O(水头高)(水头高)测压管高度测压管高度 h=pA/g第33页 例例B3.6.2B3.6.2 单管测压计(单管测压计(2 21 1)已知:已知:图示密封容器中液体图示密封容器中液体(),),在在A点接上单管测压计点接上单管测压计求:求:与测压管高度与测压管高度h 关系关系解:解:(表压强

22、表压强)h为被测点淹深,称为测压管高度为被测点淹深,称为测压管高度.讨论:讨论:液面在压强液面在压强 推进下上升至推进下上升至 h 高度,压强势能转化为重力势能。高度,压强势能转化为重力势能。压强势能压强势能重力势能重力势能第34页 例例B3.6.2B3.6.2 U形管测压计(形管测压计(2 22 2)解解:沿沿U 形管右支液面取等压面,列平衡方程形管右支液面取等压面,列平衡方程已知已知:图示封闭容器中为水图示封闭容器中为水,U形管水银测压计形管水银测压计中中h=10cm求:求:(,(,表压强表压强 真空压强真空压强 绝对压强)绝对压强)第35页 例例B3.6.2AB3.6.2A U形管差压计

23、形管差压计解:解:沿沿U 形管左支液面取等压面形管左支液面取等压面11已知已知:图示盛满水封闭容器高差图示盛满水封闭容器高差 ,U形管水银测压计中液面差形管水银测压计中液面差h=10cm求:求:(,(,表压强表压强 绝对压强)绝对压强)第36页B3.6.3 B3.6.3 运动流场中压强分布运动流场中压强分布 压强系数压强系数1.1.惯性力对压强分布影响惯性力对压强分布影响 p 0,v 0为参考值,对外流场取为参考值,对外流场取p,v B3.6.3 运动流场中压强分布运动流场中压强分布(3-1)文丘里管流动文丘里管流动 第37页B3.6.3 B3.6.3 运动流场中压强分布运动流场中压强分布 无粘流场无粘流场压强分布压强分布 静止流场压强分布静止流场压强分布2.粘性力对压强分布粘性力对压强分布影响影响B3.6.3 运动流场中压强分布运动流场中压强分布(3-2)第38页B3.6.3 B3.6.3 运动流场中压强分布运动流场中压强分布 汽车与飞机绕流汽车与飞机绕流B3.6.3 运动流场中压强分布运动流场中压强分布(3-3)3.复杂物面压强分布复杂物面压强分布第39页

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服