收藏 分销(赏)

雷诺数计算公式.doc

上传人:w****g 文档编号:4140240 上传时间:2024-07-31 格式:DOC 页数:3 大小:60.01KB
下载 相关 举报
雷诺数计算公式.doc_第1页
第1页 / 共3页
雷诺数计算公式.doc_第2页
第2页 / 共3页
点击查看更多>>
资源描述
雷诺数计算 其中D为物体的几何限度(如直径) 对于几何形状相似的管道,无论其ρ、v、D、η如何不同,只要比值 Re 相同,其流动情况就相同 泊肃叶公式 管的半径 R 管的长度 l 两端压强 流体的粘度 / 萨瑟兰公式 Viscosity in gases arises principally from the molecular diffusion that transports momentum between layers of flow. The kinetic theory of gases allows accurate prediction of the behavior of gaseous viscosity. Within the regime where the theory is applicable: · Viscosity is independent of pressure and · Viscosity increases as temperature increases. James Clerk Maxwell published a famous paper in 1866 using the kinetic theory of gases to study gaseous viscosity. (Reference: J.C. Maxwell, "On the viscosity or internal friction of air and other gases", Philosophical Transactions of the Royal Society of London, vol. 156 (1866), pp. 249-268.) Effect of temperature on the viscosity of a gas Sutherland's formula can be used to derive the dynamic viscosity of an ideal gas as a function of the temperature: where: · η = viscosity in (Pa·s) at input temperature T · η0 = reference viscosity in (Pa·s) at reference temperature T0 · T = input temperature in kelvin · T0 = reference temperature in kelvin · C = Sutherland's constant for the gaseous material in question Valid for temperatures between 0 < T < 555 K with an error due to pressure less than 10% below 3.45 MPa Sutherland's constant and reference temperature for some gases Gas C [K] T0 [K] η0 [10-6 Pa s] air 120 291.15 18.27 nitrogen 111 300.55 17.81 oxygen 127 292.25 20.18 carbon dioxide 240 293.15 14.8 carbon monoxide 118 288.15 17.2 hydrogen 72 293.85 8.76 ammonia 370 293.15 9.82 sulfur dioxide 416 293.65 12.54 helium 79.4 273 19 Viscosity of a dilute gas The Chapman-Enskog equation may be used to estimate viscosity for a dilute gas. This equation is based on semi-theorethical assumption by Chapman and Enskoq. The equation requires three empirically determined parameters: the collision diameter (σ), the maximum energy of attraction divided by the Boltzmann constant (є/к) and the collision integral (ω(T*)). · T*=κT/ε Reduced temperature (dimensionless) · η0 = viscosity for dilute gas (uP) · M = molecular mass (g/mol) · T = temperature (K) · σ = the collision diameter (Å) · ε / κ = the maximum energy of attraction divided by the Boltzmann constant (K) · ωη = the collision integral
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服