1、第二章 热力学第二定律练习参考答案1. 1L理想气体在3000K时压力为1519.9 kPa,经等温膨胀最后体积变到10 dm3,计算该过程的Wmax、H、U及S。解: 理想气体等温过程。U=H =0Wmax= pdV = dV =nRTln(V2/ V1)=p1V1 ln(V2/ V1)= 1519.9103110-3ln(1010-3/ 110-3)=3499.7 (J) =3.5 (kJ) 等温时的公式S= pdV/ T =nR ln(V2/ V1) =Wmax/T=3.5103/ 3000 =1.17 (JK -1)2. 1mol H2在27从体积为1 dm3向真空膨胀至体积为10 d
2、m3,求体系的熵变。若使该H2在27从1 dm3经恒温可逆膨胀至10 dm3,其熵变又是多少?由此得到怎样结论? 解: 等温过程。向真空膨胀:S= pdV/ T =nR ln(V2/ V1) (等温) =18.314ln(10/ 1) = 19.14 (JK -1)可逆膨胀: S= pdV/ T =nR ln(V2/ V1) =18.314ln(10/ 1) = 19.14 (JK -1)状态函数变化只与始、终态有关。3. 0.5 dm3 70水与0.1 dm3 30水混合,求熵变。解: 定p、变T过程。设终态体系温度为t ,体系与环境间没有热传导;并设水的密度(1 gcm-3)在此温度范围不
3、变。查附录1可得Cp,m(H2O, l) = 75.48 JK-1mol -1。n1Cp,m(t-70)+ n2Cp,m(t-30) =00.5(t-70)+0.1(t-30) =0解得 t =63.3=336.3 KS =S1 +S2 = + = n1Cp,m ln(336.3/ 343)+ n2Cp,m ln(336.3/ 303) (定P时的公式S =nCp,m ln(T1/T2)) =(0.51/1810-3)75.48ln(336.3/ 343)+(0.11/1810-3)75.48ln(336.3/ 303) = 2.36 (JK -1)4. 有200的锡250g,落在10 1kg
4、水中,略去水的蒸发,求达到平衡时此过程的熵变。已知锡的Cp,m = 24.14 JK-1mol -1。解: 定p、变T过程。设终态体系温度为t ,体系与环境间没有热传导;并设水的密度(1 gcm-3)在此温度范围不变。查附录1可得Cp,m(H2O, l) = 75.48 JK-1mol -1。n1Cp,m1(t-200)+ n2Cp,m2(t-10) =0(250/118.7)24.14(t-200)+(1000/18)75.48(t-10)=0解得 t =12.3=12.3+273.2=285.5 KS =S1 +S2 = += n1Cp,m ln(285.5/ 473)+ n2Cp,m l
5、n(285.5/ 283)=(250/118.7)24.14ln(285.5/ 473) +(1000/18)75.48ln(285.5/ 283)= 11.2 (JK -1)5. 1mol水在100和101.325 kPa向真空蒸发,变成100和101.325 kPa的水蒸气,试计算此过程的S体系、S环境和S总,并判断此过程是否自发。解: 设计恒T、恒p可逆相变过程,计算S体系。已知水的蒸发热为40.67 kJmol -1。S体系 = nH蒸发/T沸点= 140.67103/373 = 109 (JK -1)p外=0, W=0,Q实际=U=H-(pV) =H-p(Vg-Vl) =H-pVg=
6、H-nRT=140.67103 -18.314373=37.56103 (J)S环境 = -Q实际/T环境= -37.56103/373= -100.7 (JK -1)S总 =S体系 +S环境 = 109 + (-100.7)= 8.3 (JK -1) S总 0,该过程自发进行。6. 试计算10和101.325 kPa下,1mol水凝结成冰这一过程的S体系、S环境和S总,并判断此过程是否为自发过程。已知水和冰的热容分别为75.3 JK -1mol -1和37.6 JK -1mol -1,0时冰的熔化热为6025 Jmol -1。解: 设计可逆过程来计算S体系。定p (101325Pa) 下:S
7、1 = nCp,mdT/T = nCp,m ln(T2/ T1) =175.3ln(273/ 263) = 2.81 (JK -1)S2 = H /T = 1(-6025)/273 = -22.07 (JK -1)S3 = nCp,m ln(T1/ T2)=137.6ln(263/ 273) = -1.40 (JK -1)S体系 = S1 +S2 +S3 = -20.66 (JK -1)H263 =H273 +Cp,mdT =(-6025)+(37.6-75.3)(263-273) = -5648 (J)S环 = -Q/T环= -(-5648)/ 263 = 21.48 (JK -1)S总 =
8、S体系 +S环境 = (-20.66)+ 21.48= 0.82 (JK -1)S总 0,该过程自发进行。7. 有一物系如图所示,将隔板抽去,求平衡后S 。设气体的Cp均是28.03 JK -1mol -1。1mol O210, V1mol H220, V解: 纯p V T 变化。设均为理想气体,终态体系温度为t ,气体体系与环境间没有热传导。n1Cp,m1(t-283)+ n2Cp,m2(t-293) =0128.03(t-283)+ 128.03(t-293)=0解得 t =15=15+273=288 KS =S1 +S2 =+ n1R ln+ n2R ln= + n1R ln+ n2R
9、ln=1(28.03-8.314)ln(288/ 283) +18.314ln(2/1)+1(28.03-8.314)ln(288/ 293) +18.314ln(2/1)= 11.53 (JK -1)8. 在温度为25的室内有一冰箱,冰箱内的温度为0。试问欲使1kg水结成冰,至少须做功若干?此冰箱对环境放热若干?已知冰的熔化热为334.7 Jg -1。(注: 卡诺热机的逆转即制冷机,可逆制冷机的制冷率)解: 水结成冰放热(冰箱得到热):Q1 = 1103334.7 = 334.7103 (J)= = 10.92至少须做功(冰箱得到功): W =334.7103/(-10.92) = -30.
10、65103 (J)体系恢复原状,U =0,W = Q1+ Q2,冰箱对环境放热:Q2 = W - Q1 = - 30.65103 -334.7103= -365.4103 (J) 9. 有一大恒温槽,其温度为96.9,室温为26.9,经过相当时间后,有4184 J的热因恒温槽绝热不良而传给室内空气,试求:(1) 恒温槽的熵变;(2) 空气的熵变;(3) 试问此过程是否可逆。解: 该散热过程速度慢,接近平衡,可视为可逆过程。(1) S恒温槽= Q /T恒温槽= (-4184)/(96.9+273)= -11.31 (JK -1)(2) S空气 = -Q /T空气= -(-4184)/(26.9+
11、273)= 13.95 (JK -1)(3) S总 =S恒温槽+S空气= (-11.31)+ 13.95= 2.64 (JK -1)S总 0,该过程自发进行。10. 1mol甲苯在其沸点383.2K时蒸发为气,求该过程的Q、W、U、H、S、G和F。已知该温度下甲苯的汽化热为362 kJkg -1。解: 恒T、p可逆相变过程(正常相变)。设蒸气为理想气体,甲苯的摩尔质量为92 gmol -1。W= p外(VgVl) = p外Vg = nRT =18.314383.2 = 3186 ( J )H= Qp = (10.092 )362103=33.3103 ( J )U= QW=33.3103318
12、6= 30.1103 ( J )S = Q /T = (10.092 )362103 /383.2= 86.9 (JK -1)G = 0A = - W=UTS = -3186 ( J )11. 1mol O2于298.2K时: (1)由101.3 kPa等温可逆压缩到608.0 kPa,求Q、W、U、H、A、G、S和S孤立 ;(2) 若自始至终用608.0 kPa的外压,等温压缩到终态,求上述各热力学量的变化。解: 等温过程,纯p V T 变化。设O2为理想气体。(1) U=H=0Q=W= pdV = nRT ln = nRT ln =18.314298.2ln(101.3/608.0) =
13、-4443 ( J )S体 = nR ln = nR ln= 18.314ln(101.3/608.0) = -14.9 ( J )S环 = -Q /T环= -(-4443)/298.2= 14.9 (JK -1)S孤立=S体+S环= (-14.9)+ 14.9= 0 (可逆过程)G =Vdp = nRT ln = 18.314298.2ln(608.0/101.3) = 4443 ( J )A = -pdV = - W = 4443 ( J )(2) U=H=0Q=W= p外(V2 V1) = p外()= nRT(1)=18.314298.2(1) = 12.401103 ( J )S体 =
14、 nR ln = nR ln= 18.314ln(101.3/608.0) = -14.9 ( J )S环 = -Q /T环= -(12.401103)/(298.2)= 41.6 (JK -1)S孤立=S体+S环= (-14.9)+ 41.6= 26.7 (JK -1)S孤立 0,自发过程。G =Vdp = nRT ln = 18.314298.2ln(608.0/101.3) = 4443 ( J )A = -pdV = - W = 4443 ( J )12. 25,1mol O2从101325 Pa绝热可逆压缩到6101325 Pa,求Q、W、U、H、G、S。已知25氧的规定熵为205.
15、03 JK-1mol -1。(氧为双原子分子,若为理想气体,Cp,m = R,= )解: 设O2为理想气体。纯p V T 变化。= = 1.4,T1p11 -= T2p21 -T2= T1 (p1/ p2) (1) / =298(101325/ 6101325) (11.4) / 1.4 =497.2 ( K )Q= 0U = W = nCV,mdT =n(Cp,m-R )dT = 1(8.3148.314 )(497.2298) =4140 ( J )W = 4140 ( J )H = nCp,mdT =1(8.314)(497.2298) =5796.5 ( J )S体 = Q /T =
16、0设计定压升温和定温加压两个可逆过程代替绝热可逆压缩(令始、终态p V T相同)来计算G。定压(101325 Pa)升温(298497.2K):规定熵: ST = S298 += 205.03 + 18.314ln(T /298)= 39.23 + 29.1lnT dG = -SdT + Vdp,定p下,GT = -SdT = -39.23 + 29.1lnT dT= -39.23(497.2298)-29.1497.2(ln497.2-1)-298(ln298-1)= -7814.6 -34634.2= -42449 ( J )定温(497.2K)加压(1013256101325 Pa):
17、Gp = Vdp = nRT ln=18.314497.2ln=7406.6 ( J )G =GT +Gp =(-42449) +7406.6= -35042 ( J )13. 0,1MPa,10 dm3的单原子分子理想气体,绝热膨胀至0.1MPa,计算Q、W、U、H、S 。(a) p外p;(b) p外0.1MPa ;(c) p外0。(单原子理想气体,CV,m = R,= )解:(a) p外p,可逆绝热膨胀。= ,T1p11 -= T2p21 -T2= T1 (p1/ p2) (1) / =273(1106/0.1106 ) 2/5 =108.7 ( K )n = 4.4 (mol )Q= 0
18、U = W = nCV,mdT = 4.48.314(108.7273) = 9016 ( J )W = 9016 ( J )H = nCp,mdT =4.48.314(108.7273) = 15026 ( J )S体 = Q /T = 0(b) p外0.1MPa,不可逆绝热膨胀。由于U = W,则nCV,mdT = nCV,m(T2T1) = p外(V2 V1) = p外()CV,m(T2T1) =R(T2)8.314(T2273) =8.314(T2)T2= 174.7 ( K )Q= 0U = W = nCV,mdT = 4.48.314(174.7273) = 5394 ( J )W
19、 = 5394 ( J )H = nCp,mdT =4.48.314(174.7273) = 8990 ( J )S体 = nCp,mdT/T + nR ln= nCp,m ln(T2/ T1) + nR ln=4.48.314ln(174.7/ 273)+ 4.48.314ln(1106/0.1106 )= 43.4 (JK -1)(c) p外0,不可逆绝热膨胀。Q= 0W = p外(V2 V1) =0U = 0 ,对理想气体,则温度未变,所以H = 0S体 = nR ln=4.48.314ln(1106/0.1106 ) = 84.2 (JK -1)14. 在25、101.325 kPa下
20、,1mol过冷水蒸气变为25、101.325 kPa的液态水,求此过程的S及G。已知25水的饱和蒸气压为3.1674 kPa,汽化热为2217 kJkg -1。上述过程能否自发进行?解: 设计可逆过程来计算S和G ,设蒸气为理想气体:S1 = pdV/ T= nR ln =nR ln=18.314ln(101.325/3.1674 ) = 28.8 (JK -1)S2 = Q /T = (-H汽化 /T) = 118(-2217)/298 = -133.9 (JK -1)S3 = 0 (恒温下,S = pdV/ T,液、固的S随V、p变化很小)S体系 = S1 +S2 +S3 = -105.1
21、 (JK -1)G1 =Vdp = nRT ln=18.314298ln(3.1674/ 101.325) = -8585.8 ( J )G2 = 0G3 = Vdp =(118/1)10-6(101.325103-3.1674103)= 1.82 ( J )(恒温下,液、固的V随p变化很小)G = G1 +G2 +G3 = -8584 (JK -1)GT, p0,该过程能否自发进行。15. 指出在下述各过程中体系的U、H、S、A和G何者为零?(1) 理想气体卡诺循环。(2) H2和O2在绝热钢瓶中发生反应。(3) 非理想气体的绝热节流膨胀。(4) 液态水在373.15K和101.325 kP
22、a下蒸发为汽。(5) 理想气体的绝热节流膨胀。(6) 理想气体向真空自由膨胀。(7) 理想气体绝热可逆膨胀。(8) 理想气体等温可逆膨胀。解:(1) U、H、S、A、G均为零。(2) Q= 0,W =0,U为零。(3) H为零。(4) G为零。(5) U、H为零。(理想气体经绝热节流膨胀,T不变)(6) Q= 0,W =0,U、H为零。 理想气体向真空自由膨胀,T不变,H=U+(pV) (7) Q= 0,S为零。(8) U、H为零。16. 某溶液中化学反应,若在等温等压下进行(298.15K、101.325 kPa),放热4104J,若使该反应通过可逆电池来完成,则吸热4000J。试计算:(1
23、) 该化学反应的S。(2) 当该反应自发进行(即不作电功)时,求环境的熵变及总熵变。(3) 该体系可能作的最大功。解: (1) 通过可逆电池来完成该化学反应为可逆过程,所以S体 =Q /T=4000/298.15 = 13.4 ( J )(2) 该反应自发进行(即不作电功)时为不可逆过程,(2)与(1)的始、终态相同,所以S体 = 13.4 ( J )S环按实际过程计算。S环 = -Q /T环= -(4104)/ 298.15= 134.2 (JK -1)S总=S体+S环= 13.4+ 134.2 = 147.6 (JK -1)(3) 由于反应自发进行(即不作电功)时与反应通过可逆电池进行时的
24、始、终态相同(不做体积功),U相同,所以U =Q1 = Q2-W / = -4104 = 4000- W /W / = 4104 + 4000 = 4.4104 ( J )17. 已知5时,固态苯的蒸气压为17.1mmHg,过冷苯蒸气压为2.64 kPa,设苯蒸气为理想气,求5、1mol过冷苯凝固为固态苯的G。解: 设计可逆过程来计算G:G1 =0G2 = Vdp = nRT ln=18.314268ln= -326.8 ( J )G3 =0G = G1 +G2 +G3 = -326.8 (J)18. 计算下列恒温反应的熵变化:2C (石墨)+3H2 (g)C2H6 (g)已知25时的标准熵如
25、下: C (石墨) 5.74 JK -1mol -1;H2 130.6 JK -1mol -1;C2H6 229.5 JK -1mol -1。解:rS =(Smo) 产物 -(Smo)反应物=1229.5 -(25.74 + 3130.6) = -173.8 (JK -1)19. 计算下列恒温反应(298K)的Gro,m:C6H6 (g)+ C2H2 (g) C6H5C2H3 (g)已知25时C6H5C2H3的fHmo =147.36 kJmol -1,Smo =345.1 JK -1mol -1。解: 查附录2可得:fHmo / kJmol -1 Smo / JK -1mol -1C6H6
26、(g) 82.93 269.69C2H2 (g) 226.73 200.83rHm =1147.36-(182.93 + 1226.73) = -162.3 (kJ)rS =(Smo) 产物 -(Smo)反应物=1345.1 -(1269.69 + 1200.83)= -125.4 (JK -1)Gro,m=rHm - TrS = -162.3103 - 298(-125.4)= -125103 (J)20. 25、101.325 kPa时,金刚石与石墨的规定熵分别为2.38 JK -1mol -1和5.74 JK -1mol -1;其标准燃烧热分别为395.4 kJmol -1和393.5
27、kJmol -1。计算在此条件下,石墨金刚石的Gmo值,并说明此时哪种晶体较为稳定。解:rHm =1(-393.5103) -1(-395.4103) = 1.9103 (J)rS =(Smo) 产物 -(Smo)反应物=12.38 -15.74= -3.36 (JK -1)Gmo =rHm - TrS = 1.9103 - 298(-3.36)= 2901 (J)rHm0,石墨晶体较为稳定。21. 试由20题的结果,求算需增大到多大压力才能使石墨变成金刚石?已知在25时石墨和金刚石的密度分别为2.260103 kgm -3和3.513103 kgm -3。解: dG = -SdT + Vdp
28、,定T下,dG = Vdp,所以d(G) = Vdp= (V金刚石-V石墨) dprGm(p2)-rGm(p1)= (V金刚石-V石墨)dp 在25、p2下,只有当rGm(p2)0,石墨金刚石才能自发进行。(石墨为1mol。)Gm(p2)= rGm(101.325 kPa)+(V金刚石-V石墨)dp = 2901 + (11210-3/3.513103) -(11210-3/2.260103)(p2 -101.325103)0(恒温下,液、固的V随p变化很小)解得 p2 1.53109 Pa。即 p2 1.53109/101.325103=15100 atm22. 101325 Pa压力下,斜
29、方硫和单斜硫的转换温度为368K,今已知在273K时,S(斜方)S(单斜)的H=322.17 Jmol -1,在273K373K之间硫的摩尔等压热容分别为Cp,m(斜方) 17.240.0197T JK-1mol -1;Cp,m(单斜) 15.150.0301T JK-1mol -1,求(a)转换温度368K时的Hm;(b) 273K时转换反应的Gm。解:(a) a =115.15117.24 = -2.09b =10.03010.0197 = 0.0104Cp = -2.09+0.0104T ,基尔霍夫公式的不定积分形式为rHmo(TK) = Cp dT +Ho= -2.09T+ 0.010
30、4(1/2)T2 +Ho= -2.09T+ 0.0052T2 +Ho当T = 273K,rHmo(273K) =322.17 Jmol -1,代入上式,求得积分常数Ho=505.2 (J) ,所以rHmo(TK) = -2.09T+ 0.0052T2 +505.2rHmo(368 K) = -2.09368+ 0.00523682 +505.2= 440.3 ( J )(b) 斜方硫和单斜硫在转换温度(368K)时的相变为定T、定p可逆过程,根据吉布斯-亥姆霍兹公式,= -dT +I = -(-2.09T+ 0.0052T2 +505.2)dT/ T2 +I=2.09lnT - 0.0052T
31、 +505.2/ T +IGm(T K) =2.09TlnT - 0.0052T2 +505.2 +I T当T = 368K,Gm(368K) = 0,代入上式,求得积分常数I = -11.8 所以 Gm(T K) =2.09TlnT - 0.0052T2 +505.2 -11.8TGm(273 K) =2.09273ln273 - 0.00522732 +505.2 -11.8273= 96.8 ( J )23. 1mol水在100、101.3 kPa恒温恒压汽化为水蒸气,并继续升温降压为200、50.66 kPa,求整个过程的G(设水蒸气为理想气)。已知: Cp,H2O(g) 30.541
32、0.2910 -3T JK-1mol -1;S oH2O(g)(298K)188.72 JK-1mol -1。解: 设计可逆过程来计算G:G1 =0 (定T、定p可逆过程)水的规定熵: ST = S298 += 188.72 += 188.72 + 30.54 ln(T /298) + 10.2910 3(T-298)= 11.66 + 30.54 lnT + 10.2910 3T又 dG = -SdT + Vdp,定p下,G2 = -SdT = -11.66 + 30.54 lnT + 10.2910 3T dT= -11.66(473373)-30.54473(ln473-1)-373(l
33、n373-1)+10.2910 3(1/2)(47323732)= -19192.3 ( J )理想气定温(473K)下: G3 = Vdp = nRT ln=18.314473ln=2726 ( J )G = G1 +G2 +G3 =0 +(-19192.3) +(2726) = -21918.3 (J)= -21.9 (kJ)24. 计算下述化学反应在101.325 kPa下,温度分别为298.15K及398.15K时的熵变各是多少?设在该温度区间内各Cp,m值是与T无关的常数。(T=298.15K) C2H2 (g , po) +2H2 (g , po) = C2H6 (g , po)已
34、知: S om(JK-1mol -1) 200.82 130.59 229.49Cp,m(JK-1mol -1) 43.93 28.84 52.65解: rS =(Smo) 产物 -(Smo)反应物rS (298.15K) = 1229.49 -1200.82-2130.59= -232.51 (JK -1)Cp,m =(Cp,m) 产物 -(Cp,m)反应物=152.65 -143.93-228.84= -48.96 (JK -1)rS =rS298.15 +rS (398.15K) = -232.51 + = -232.51 - 48.96ln = -246.7(JK -1)25. 反应C
35、O (g) +H2O (g) = CO2 (g) + H2 (g) ,自热力学数据表查出反应中各物质fHmo,S om及Cp,m,求该反应在298.15K和1000K时的rHmo,rSmo和rGmo 。解: 查附录1和附录2,可得:CO (g) + H2O (g) = CO2 (g) + H2 (g)fHmo(kJmol 1, 298.15K) -110.52 -241.83 -393.51 0S om(JK-1mol 1, 298.15K) 197.51 188.72 213.64 130.59Cp,m(JK-1mol -1,)CO (g) 27.614 +50.2110-3TH2O (g)
36、 30.36 +9.6110-3T +1.1810-6T2CO2 (g) 44.141 +9.03710-3T 8.535105T -2H2 (g) 29.07 0.83610-3T +2.0110-6T2a =129.07+144.141130.36127.614 = 15.21b =1(0.83610-3)+19.03710-319.6110-3150.2110-3 = 0.0516c=12.0110-611.1810-6 = 8.310-7Cp = 15.210.0516T+8.310-7T28.535105T -2rHm(298.15K) =1(-393.51)+01(-110.52)
37、1(-241.83) = -41.16 (kJ)rSm (298.15K)=(Smo) 产物 -(Smo)反应物=1213.64+1130.591197.511188.72= -42 (JK -1)Gmo(298.15K) =rHm - TrS = -41.16298.15(-42)10-3= -28.64 (kJ)基尔霍夫公式的不定积分形式为rHmo(TK) = Cp dT +Ho= 15.21T0.0516(1/2)T2 +8.310-7(1/3)T 3+8.535105/ T +Ho= 15.21T+ 0.0258T2 +2.7710-7T 3+8.535105/T +Ho当T = 29
38、8.15K,rHmo(298.15K) = -41.16103 J,代入上式,求得积分常数Ho= -50858.3(J) ,所以rHmo(TK) = 15.21T+ 0.0258T2 +2.7710-7T 3+8.535105/T -50858.3rHmo(1000 K) = 15.211000+ 0.025810002 +2.7710-71000 3+8.535105/1000 -50858.3= 8717.8 ( J ) = 8.7(kJ)rS =rS298.15 +rSmo (1000K) = -42 + 15.21ln(1000/298.15)0.0516(1000-298.15)+8
39、.310-7(1/2)(10002-298.152)+8.535105(1/2)(1/10002-1/298.152)= 8.63 (JK -1)Gmo(1000K) =rHm - TrS = 8.710008.6310-3= -17.33 (kJ)26. 指出下列式子中哪个是偏摩尔量,哪个是化学势?; ; ; ; ; 解:偏摩尔量: 、化学势: 、27. 对遵从范德华气体方程的实际气体,证明: 。解: 根据热力学基本公式, dU=TdS - pdV=根据范德华气体方程,则 ,代入上式,=28. 对理想气体,试证明: 解: 根据热力学基本公式,得,所以,对理想气体,得证。29. 试导出亥姆霍兹
40、能A的吉布斯-亥姆霍兹公式,即: 解: 根据热力学基本公式, dA= -SdT - pdV,可得在温度T时,A=U -TS ,-S=, ,得30. 有一个水和乙醇形成的溶液,水的物质的量分数为0.4,乙醇的偏摩尔体积为57.5 cm3mol -1,溶液的密度为0.8494 kgL-1,求此溶液中水的偏摩尔体积。解: 以1 mol (水+乙醇)溶液计算。V溶液 = (0.40.018+0.60.046)/ 0.8494=0.04097 (L)= 40.97 (cm3)根据偏摩尔量的集合公式,V溶液 =n1Vm,1+ n2Vm,240.97 =0.4Vm,H2O + 0.657.5Vm,H2O =
41、 16.175 (cm3mol -1)31. 25时,n摩尔NaCl溶于1000g水中,形成溶液体积V与n之间关系可表示如下: V(cm3)=1001.38 + 16.625n + 1.7738 n1.5 + 0.1194n2试计算1mol NaCl溶液中H2O及NaCl的偏摩尔体积。解:1mol NaCl溶于1000g水形成的溶液中NaCl的偏摩尔体积为Vm,NaCl = =16.625 + 1.77381.5 n0.5 + 0.11942n=16.625 + 1.77381.510.5 + 0.119421=19.525 (cm3mol -1)溶液体积V =1001.38 + 16.625
42、n + 1.7738 n1.5 + 0.1194n2=1001.38 + 16.6251 + 1.773811.5 + 0.119412= 1019.898 (cm3)nH2O =1000/18=55.556 (mol) ,nNaCl = 1 (mol)根据偏摩尔量的集合公式, V溶液 =n1Vm,1+ n2Vm,21019.898 =55.556Vm,H2O + 119.525Vm,H2O = 18.0066 (cm3mol -1)32. 比较下列六种状态水的化学势:(a) 100、101.3 kPa,液态; (b) 100、101.3 kPa,气态;(c) 100、202.6 kPa,液态; (d) 100、202.6 kPa,气态;(e) 101、101.3 kPa,液态; (f) 101、101.3 kPa,气态;试问: (1) (a)与(b) 谁大? (2) (c)与(a) 相差多少?(3) (d)与(b) 谁大? (4) (c)与(d) 谁大?(5) (e)与(f) 谁大?解:(1) (a)=(b) (两者可达相平衡)(2) =(c)-(a)= Vdp =1810-6(202.6103-101.3103)= 1.82 ( Jmol -1 )(恒温下,液、固的V随p变化很小)(3) (d) (b) (4) (c) (d)