资源描述
一. 非线性基本概念
线性极化率的基本概念:
一、 电场的复数表示法:
E(r,t)=1/2E(r,ω)exp(-iωt)+c.c. (1)
E(r,t)=Re{E(r,ω)exp(-iωt)} (2)
E(r,t)=1/2E(r,ω)exp(-iωt) (3)
以上三者物理含义是一致的,其严格数学表示是(1)式。(注意是数学表达式,所以这种表示法主要还是为了运算的方便,具体那些系数、共轭神马的物理意义是其次的,不用太纠结。)
称为复振幅,代表频率为的简谐振动,的频率仅是数学描述,物理上不存在。1/2是归一化系数。
对于线性算符,可采用(3)式进行简化计算,然后加c.c.或Re{ }即可
对非线性算符,必须采用(1)式的数学形式计算
二、 因果性原理:某时刻的电场只能引起在此时刻以后介质的响应,而对此时刻以前的介质响应没有贡献。也可以这样说,当光在介质中传播时,t时刻介质所感应的极化强度P(t)不仅与t时刻的光电场有关,也与此前的光电场有关。(先有电场E,后有极化P)
与此相关的是时间不变性原理:在某时刻介质对外电场的响应只与此前所加电场的时间差有关,而与所取的时间原点无关。
于是,极化强度表达的思路即是先找到时刻t之前附近的一段微小时间t-τ=dτ内电场的作用,再对从电场产生开始以来的时间进行积分,求得总的效应。
τ时刻电场,影响其后的极化:
t时刻的极化,来自其前面时刻的电场贡献:
或t时刻的极化,来自前面时刻的电场贡献:
三、 线性极化率: 其中
四、 介电常数(各向同性介质):
五、 色散:由于因果性原理,导致必然是频率的函数,即介质的折射率和损耗都随光波长变化,称为色散现象。正常色散:折射率随波长增加而减小。
六、 KK关系:
以上两式为著名的KK色散关系,由K-K关系课件,只要知道极化率的实部和虚部中任何一个与频率的函数关系(光谱特性)就可通过此关系求出另外一个。
线性极化率张量同样满足真实性条件:,所以,
这两式是线性极化率的KK关系。
七、 极化率的一维谐振子经典模型:没希望考了。
非线性极化率的基本概念:
一、 非线性极化强度:即与电场强度成二次、三次等幂次方关系的电极化强度。下图是课件里的标准写法
并不需要这么写就是了,可以写成下图所示,这是张量形式。
二、 非线性极化率:对于二阶和频ω3=ω1+ω2,P(2)(ω1+ω2)=ε0Dχ(2)(-ω1-ω2,ω1,ω2):E(r,ω1)E(r,ω2)。课件里介绍了很多方法求解极化强度和极化率,但都是近似求解,表达式又那么复杂……所以一般可以用这种表达式表示极化率的关系式。
三、 张量性质:把上面所说的张量形式写成各分量的形式(标量形式)后
可看出极化率分别是二阶、三阶、四阶张量,分别有9、27、81个分量。
可以这么粗略的理解:极化率与极化强度和电场强度相关,极化强度有3个分量,电场强度有3、32、33个分量,所以组合起来就是上面那么多个分量了。
四、 简并因子D:作用是使得非线性极化率的值对几种不同的同阶非线性光学效应能互相衔接,而不致发生突变。D来源于本征对易性,是光场部分的简并,因为不同频率光场在产生极化时不应该有不同的地位,尤其当几个光场频率相等时,这几个光场是不可分辨的。对n阶非线性,如果有m个相同频率,和波矢相关,要考虑方向的,例如四波混频,则简并度D=n!/m!
极化率的性质:
五、 真实性条件:ω的复共轭关系。
保证P和E都是实函数。
a.对线性极化
所以:
b.对非线性极化
六、 本征对易性:光场ω的次序交换。
各光场频率在极化率表达式中的次序可以互换而不改变极化率。
二阶非线性过程:
三阶非线性过程:
七、 完全对易性:光场和信号场(即极化场)的ω次序交换。
在远离共振区的条件下(,介质是无损耗的).
可以这样看:当介质对光场不会产生不可逆(吸收损耗等)的作用,整个过程就可类似于光线可逆来看。
二阶非线性过程:()
之间任意交换不变,共6种
三阶非线性过程:()之间任意交换不变,共24种
八、 时间反演对称性:-ω=ω
线性 所以线性极化率是对称张量。
九、 空间对称性:介质的晶格对称性导致的。
晶格周期性排列导致空间对称性,这种对称性体现在物理性质上,就是晶体的物理性质的对称性。
对极化率来说,空间对称性使得极化率张量的分量之间存在一定关系,相等、反号或等于零,使独立元素减少。
这里值得注意的是二阶极化强度,与物质直接相关的是极化率,反演对称性即是说χ在对称操作下不变,-P=P,所以P=0。
通过反演操作可知,对具有反演中心的晶类,偶数阶的非线性极化率为零。
二. 光的传播及耦合波方程
光在晶体中的传播:
一、 各向同性与各向异性:
1) 各向同性与各向异性:
各向同性介质即指介电常数在各方向上是相等的,
光在各向同性介质中传播:D与E方向相同,且垂直于光波的传播方向k,能流方向I与k一致。
光在各向异性介质中传播的特点是:光波的传播方向(k)与能流方向(I=E×H)不同,其间有一个夹角。因为在介质中电感应强度D垂直于光波传播方向,电场E总是垂直于能留传播方向,因此D和E之间具有夹角。事实上不太大,对于大多数晶体。
二、 单轴晶体和双轴晶体:
单轴晶体:介电常数和折射率有这种关系,寻常光的E、D方向平行,非寻常光的E、D不平行。
双轴晶体:介电张量三个主值都不相等的晶体有两个光轴,称为双轴晶体。
三、 o光和e光,
满足的光波,其折射率与光波传播方向无关,称为寻常光(o光),折射率为n0。光波的折射率与光波的传播方向有关,称为非常光(e光),折射率表示为n=n(θ)
四、 e光的折射率:,n(θ=0)=()1/2=n0 ,这个方向称为光轴方向。 n(θ=π/2)==ne.。所以写成。e光的能流方向和波矢方向的夹角称为走离角。
五、 走离效应:即离散效应。由于光在双折射晶体中传播的方向与光轴的夹角不等于0°或90°时,e光的能流方向和波矢方向不是同一的,o、e光会逐渐分开。因此由角度相位匹配方法(见 十二 相位匹配角计算)得到的θm不等于90°时,产生的倍频光与基频光在空间上会离散开来。
耦合波方程:
六、 慢变包络近似,:可忽略在一个波长范围内振幅的变化,或者说在波长量级的距离内光波振幅的变化非常慢(随z的变化是慢变)。是对振幅空间缓慢变化的近似:
七、 准单色近似:振幅时间慢变近似。
假设波的振幅随时间缓慢变化(随t的变化是慢的),即满足以下近似
八、 Manley-Rowe关系:,其中,i=1,2,3是光强即电磁场辐射能流率。它表明了相互作用中三个光电场光子数的变化关系,两个光子湮灭产生一个光子是和频和倍频过程,一个光子湮灭产生两个光子是参量产生过程。也是在无损耗介质中非线性相互作用的能量守恒关系,可写成:,初始时光电场的总光强。公式推导时,电场和极化强度采用的是复数表达形式,三个耦合波方程的极化率系数由对称性可知是相等的。
作为二阶三阶非线性作用的出发点,从耦合波方程:和极化强度PNL就可以导出各种效应和关系。
石顺祥和钱士雄的书上采用的相位相反……不知老师有提过没,不要给判错了。此处采用钱士雄的,,要大大的写出来,不然可能会误解。
(1)
(2)
(3)
相位匹配:
九、 第一类与第二类相位匹配:
第一类相位匹配:两基频光取同样的偏振方向,称为第一类相位匹配,其偏振性质对负单轴晶体表为o+o→e,对正单轴晶体表为e+e→o。
第二类相位匹配:取两基频光的偏振方向相互垂直:一束为o光,一束为e光。其偏振性质对负单轴晶体可表为o+e→o,对正单轴晶体可表为o+e→o。
十、 临界和非临界
临界相位匹配:角度相位匹配。临界相位匹配可以推广到和频过程,同样可以有第I类和第II类两种匹配,匹配角计算复杂一些:
非临界相位匹配:温度相位匹配,通过温度控制折射率的微小改变,使θm在某一温度时达到90°。
十一、 影响相位匹配的因素
1. 走离效应:通过调整光传播方向的角度实现相位匹配时,参与非线性作用的光束选取不同的偏振态,就是的有限孔径内的光束之间发生分离。对于第一类相位匹配:降低倍频光的功率密度,扩大孔径。对于第二类相位匹配,影响倍频效率(基波分别为o光和e光,当它们在空间上完全分离时,就不能产生二次谐波)。薄晶体可以改善;非临界相位匹配可以避免。
2. 输入光发散引起相位失配(光束发散角):实际上光束都不是理想均匀平面波,而是具有一定的发散角。根据傅里叶光学,任一非理想的平面波都可视为具有不同方向波矢的均匀平面波的叠加。而具有不同波矢方向的平面波不可能在同一相位匹配角方向达到相位匹配。波矢k偏离z方向引入了附加的,正比于发散角。光束聚焦可以提高光强,有利于倍频效率,但细光束的发散角变大,会降低倍频效率。需要提高光束的亮度(单位立体角内的能流密度)
3. 输入光束的谱线宽度引起相位失配(光谱宽度):任何一束光都是具有一定谱线宽度的非理想单色波,所有频率分量不同不可能在同一个匹配角下达到相位匹配。其他光谱分量偏离引起附加的,正比于光谱宽度;短脉冲容易实现高功率和高光强;超短脉冲还有色散展宽效应,降低了峰值功率,影响效率。
十二、 相位匹配角的计算:调节入射光波矢与晶体光轴之间的夹角θ,通过改变e光折射率n(θ)使之满足。记住Ⅰ类和Ⅱ类的相位匹配条件,代入e光折射率表达式中即可求出角度。倍频光处在低折射率的偏振方向上。负单轴Ⅰ类是,Ⅱ类是,如上表。1/2系数的出现是因为基频光两折射率不相同。
三. 二阶非线性过程
都是围绕能量和动量守恒
倍频:
一、 有效倍频系数:(这部分还是看书好,具体参数不用深究了,记住结果就好了。)KDP晶体(负单轴晶体),属于2m晶体,为非零元素。负单轴晶体()第一类相位匹配,o+o→e
二、 最佳相位匹配:就在满足相位匹配角条件下,选择光线传播方位角使有效倍频系数最大。KDP晶体的Ⅰ型最佳是(匹配角41°,方位角45°)。使得 最大。匹配角有匹配条件和的数值决定,即由材料本身的波长决定。
混频和参量过程:
三、 和频,
光学和频可以用于频率上转换,就是借助近红外的强泵浦光(频率),把入射的红外弱信号光(频率)转换成可见光(频率)。光学和频是一种产生较短波长相干辐射的有效手段。和频转换效率
转换效率相关:小信号:当相互作用超过一个相干长度(gL=pi/2时的L值),更长的介质对增加效率也是没用的,所以需要满足相位匹配条件;转换效率取决于介质中基频光的强度,采用聚焦可以提高基频光的强度;选取合适的基频光偏振方向,可以获得大的倍频系数增加效率。
能量与动量守恒关系:,
差频(前两个)、和频极化强度:
四、 差频
输入,得到和的过程称为光学差频过程。可用于频率下转换。理论上和和频没多大差别。
能量与动量守恒关系:,
五、 频率上转换
输入和,得到称为和频过程。当作为泵浦光,作为信号光,得到,称为参量上转换。
六、 参量放大(OPA)
在类似于差频的过程中,随传输距离的增加,泵浦光的能量逐渐转移到信号光中去,使之放大,同时产生闲频光,这种过程与微波波段的参量放大类似,故称光学参量放大。(利用参量转换实现弱信号的放大,称为参量放大。OPA特点是可调谐,信噪比高。)
七、 光学参量振荡器(OPO)
由于单次通过的光参量放大倍数较小,为提高能量转换效率,可把参量放大器置于谐振腔内。使频率为(和)的光在腔内振荡增强,当频率为的泵浦光的能量超过某一阀值时,非线性相互作用的增益克服腔内损耗,即可产生稳定的频率为(和)的光振荡输出,这一过程称为参量振荡,这种装置称为光学参量振荡器。(利用参量放大实现激光振荡输出,称为参量振荡。OPO特点是连续可调谐,光束质量高。)
线性电光效应:
作用于介质的是光电场和直流场或低频场。
八、 非线性极化强度
九、 有效折射率:
一堆,见石顺祥版教材P115
十、 介电常数:可以将介电常数按E的幂次方展开,然后由D=ε·E+PNL对应E的同次幂系数得到,取极化强度高次幂就可以得到非线性光电效应,如克尔效应。
十一、 Pockel盒
利用Pockel效应制成的电光效应元件,由透明晶体在选定的加压方向设置电极而成。有时为防潮、防尘将调制晶体密封在有石英或光学玻璃窗的盒内,故有此称。
四. 三阶非线性过程-参量过程
非参量过程:与相位匹配无关,进行中有关相位总是自行匹配,Δk恒等于零。非线性介质在于光相互作用后的终态和初态不同,与极化率的虚部相关。
参量过程:与相位匹配相关,需要采取措施才能实现相位匹配。相互作用后介质仍回到初态,不考虑损耗时只与极化率实部相关。
耦合波方程和极化强度(矢量表述):
引入有效极化率,化为标量表述:
光Kerr效应χ(3)(ω;ω,ω,-ω):
克尔效应:外加电场导致折射率改变。折射率该变量正比于电场的平方,也称为非线性电光效应。线偏振光经过外加电场的介质变成椭圆偏振光。
光克尔效应:光电场直接引起的折射率变化(即非线性折射率)的效应,其折射率变化大小与光电场的平方成正比,即。这种效应属于三阶非线性光效应,被称为光学克尔效应,或简称为克尔效应。具有克尔效应的介质称为克尔介质。
一、 非线性折射率
二、 自作用和互作用克尔效应
自作用光克尔效应:利用频率为的信号光自身的光强引起介质折射率变化,同时用同一束信号光直接探测在该频率下的非线性极化率实部或非线性折射率的大小。
互作用光克尔效应:演示这种光克尔效应,需要两种光:泵浦光——引起折射率变化的强光;信号光——探测介质折射率变化大小的弱光。也就是用频率不同()或偏振方向不同的强泵浦光引起介质折射率变化,同时用频率为的弱信号光探测介质非线性极化率实部或非线性折射率的大小。
极化强度分别如下:
三、 自聚焦
当外加光电场的频率与入射光电场的频率相同时,即本身也能产生自作用效应,使得介质折射率会叠加上与光强相关的非线性折射率,即光的自聚焦效应。(同自作用克尔效应)
稳态自聚焦:介质的响应时间远小于入射激光的脉冲宽度,可作稳态处理。
动态自聚焦:入射激光是短脉冲时,必须考虑光束参量随时间的变化。
极化率:,折射率对应其实部。
近轴近似:径向坐标远小于光束半径
四、 Z-Scan
不仅可用单光束测量,而且可以用同一装置测出非线性极化率的实部和虚部,即非线性吸收系数和非线性折射率。
① 焦点前后光强的剧烈变化体现了非线性过程的变化,反映在远场的通过率上
② 小孔时测量非线性折射率系数,判断自聚焦和自散焦。(先不加样品侧得PI,加上样品测得PT,计算出归一化透射率T(z)=PT/PI。然后让样品研光束传播方向在焦点前后连续移动,可测得归一化透射率T(z)随z变化的曲线,从而确定样品非线性折射率的大小和性质。)
开孔是测量非线性吸收,判断饱和吸收还是反饱和吸收。
三倍频:χ(3)(3ω;ω,ω,ω):
χ(3)(3ω;ω,ω,ω): 非线性系数小,相位匹配困难,效率低,通常采用“倍频+和频”两步得到三倍频。在金属气体中利用共振增强使增大。
四波混频:χ(3)(ω4;ω1,ω2,ω3):
五、 简并四波混频
四个波频率相等称为简并四波混频。如果共线退化为光kerr效应。一般实验取反向参量放大式:,
,三个同频率的基频光在三阶极化率的作用下产生同频的光
六、 相位匹配方式
,包括其他差频方式 ,,
七、 相位共轭概念
1) 沿z方向传播,频率为的光波电场一般可表为如下复数加其复数共轭的形式,即,如果该光波入射一个系统,其输出光电场的复振幅是原光电场复振幅的复共轭,则称输出光波是输入光波的相位共轭波。其光电场表示为
八、 原理和产生方法
原理:上式中k取+号,原光波的前向相位共轭波,传播方向相同,振幅为复共轭,波阵面用的空间分布与原光波成镜像对称。k取-号,原光波的后向相位共轭波,传播方向相反,振幅为复共轭,波阵面用的空间分布与原光波相同,为原光波的时间反演波。
产生方法:全息术,四波混频,SBS(受激布里渊散射)
三阶非线性过程-非参量过程
受激Raman散射;
一、 原理,
由介质内部原子、分子的振动或转动,也是一种非弹性散射,散射光频率与入射光频率不同,频移量较大,相应于振动能级差。散射光频率下移者(红移),称为斯托克斯散射光;散射光频率上移者(蓝移),称为反斯托克斯散射光。
二、 特点,
① 高输出强度:可与泵浦光相当,转换效率60%以上,个别可以到100%。
② 高方向性:空间发散角与入射光相当,可以近衍射极限。
③ 高单色性:与入射光相当,甚至更窄。
④ 脉冲宽度短:一般可以短于泵浦脉冲。
⑤ 明显的阀值性:以上特性在一定泵浦阀值以上才发生。
⑥ 多级散射:经常可以看到多级的级联的散射。
相位特性:与泵浦光有固定的相位关系。
三、 相位匹配关系:
,能量守恒:
相位关系是:
v下标的是拉曼频率,即介质振动调制频率。
四、 非线性极化强度
斯托克斯散射光:
反斯托克斯散射光:一级反斯托克斯可以认为是一级斯托克斯散射光和入射激光通过三阶非线性极化强度,所以
实部反映相位调制,虚部反映强度变化。虚部小于零,g为增益因子,斯托克斯散射光按指数增长。
受激Brillouin散射;
五、 原理,
在激光的电场作用下,通过电致伸缩效应,使介质发生周期性密度和介电常数的变化,而导致入射光与声波场间发生相干散射过程。
六、 特点,
以反向散射为主。(其余同BRB)
七、 相位匹配关系:下标b代表声子,p为入射光。
, ()
八、 非线性极化强度
双光子吸收;
九、 原理,
当频率为和的两束光波通过非线性介质时,如果与介质的某个跃迁频率接近,就会发现两束光同时衰减,这是因为介质同时吸收两个光子所致,这种现象称为双光子吸收。
十、 特点,
不同于一般的线性吸收,它依赖于另一光场的存在,是种非线性吸收。
十一、 相位匹配关系
,
十二、 非线性极化强度
五. 其他非线性现象
光纤中的非线性效应:
一、 单模与多模光纤
在 V<2.405时,在光纤中只能存在一个基模,称为单模光纤。
二、 群速度色散(GVD)
将传播常数β对某个频率ω展开,一阶系数是,vg是群速度。二阶系数为。也即群速度色散系数。GVD就是不同波长成分传播群速度不同。
三、 自相位调制
一堆方程……简言之就是非线性折射率作用后,光脉冲在光纤中的传播将保持原有脉冲形状不变,只是在相位上产生了与强度有关的相移。
四、 光孤子
在具有反常色散特性的光纤中,SPM效应产生正的啁啾。由于,GVD会产生负的啁啾,故对SPM效应起补偿作用,使得光脉冲在光纤中传播时会保持一个无啁啾的脉冲。因此产生了光孤子。
题目:
选择题:1/3, 多项选择=判断对错, 围绕基本概念,原理,性质等
问答题:1/3, 名词解释和回答问题, 围绕基本概念,原理,性质等
计算题: 1/3, 公式推导和简单计算等,最终计算式列出即可(Manley-Rowe关系和相位匹配角计算)
考概念和理解, 不用背公式, 需要用到的公式都会给出.
需要记忆的公式:
非线性极化率表达式;简并系数计算;
单轴晶体中o光和e光的折射率公式;
慢变包络近似, 准单色近似, 傍轴近似;
KDP晶体是负单轴
展开阅读全文