资源描述
立体几何综合大题(理科)40道及答案
1、四棱锥中,⊥底面,,, .
(Ⅰ)求证:⊥平面;
(Ⅱ)若侧棱上的点满足,求三棱锥的体积。
【答案】
(Ⅰ)证明:因为BC=CD,即为等腰三角形,又,故.
因为底面,所以,从而与平面内两条相交直线都垂直,
故⊥平面。
(Ⅱ)解:.
由底面知.
由得三棱锥的高为,
故:
2、如图,四棱锥中,四边形为矩形,为等腰三角形,,平面 平面,且,分别为和的中点.
(Ⅰ)证明:平面;
(Ⅱ)证明:平面平面;
(Ⅲ)求四棱锥的体积.
O
【答案】
(Ⅰ)证明:如图,连结.
∵四边形为矩形且是的中点.∴也是的中点.
又是的中点,
∵平面,平面,所以平面;
(Ⅱ)证明:∵平面 平面,,平面 平面,
所以平面 平面,又平面,所以
又,是相交直线,所以面
又平面,平面平面;
(Ⅲ)取中点为.连结,为等腰直角三角形,所以,
因为面面且面面,
所以,面,
即为四棱锥的高.
由得.又.
∴四棱锥的体积
考点:空间中线面的位置关系、空间几何体的体积.
3、如图,在四棱锥中,,, ,,,.
(Ⅰ)证明:∥;
(Ⅱ)若求四棱锥的体积
【答案】(Ⅰ)设,连接EF,
∵∴
∵平分为中点,为中点,
∴为的中位线.
∵∥,
∴∥.
(Ⅱ)底面四边形的面积记为;
.
.
考点:1.线面平行的证明;2.空间几何体的体积计算.
4、如图,在四棱锥中,底面为菱形,其中,,为的中点.
(1) 求证:;
(2) 若平面平面,且为的中点,求四棱锥的体积.
【答案】
(1),为中点,
连,在中,,,
为等边三角形,为的中点,
,
,平面,平面 ,
平面.
(2)连接,作于.
,平面,
平面平面ABCD,
平面平面ABCD,
,
,
.
,
又,.
在菱形中,,
,
.
.
5、如图,是矩形中边上的点,为边的中点,,现将沿边折至位置,且平面平面.
⑴ 求证:平面平面;
⑵ 求四棱锥的体积.
【答案】(1) 证明:由题可知,
(2) ,则
.
6、已知四棱锥中,是正方形,E是的中点,
E
D
C
B
A
P
(1)若,求 PC与面AC所成的角
(2) 求证:平面
(3) 求证:平面PBC⊥平面PCD
【答案】平面,是直线在平面上的射影,是直线和平面所成的角。又,四边形是正方形,,;直线和平面所成的角为
(2)连接AC交BD与O,连接EO, ∵E、O分别为PA、AC的中点
∴EO∥PC ∵PC平面EBD,EO平面EBD ∴PC∥平面EBD
(3)∵PD^平面ABCD, BC平面ABCD,∴PD^BC,
∵ABCD为正方形 ∴ BC^CD,
∵PD∩CD=D, PD,CD平面PCD
∴BC^平面PCD
又∵ BC平面PBC
∴平面PBC^平面PCD
7、在边长为的正方形中,分别为的中点,分别为的中点,现沿折叠,使三点重合,重合后的点记为,构成一个三棱锥.
(1)请判断与平面的位置关系,并给出证明;
(2)证明平面;
(3)求四棱锥的体积.
【答案】(1)平行平面
证明:由题意可知点在折叠前后都分别是的中点(折叠后两点重合)
所以平行
因为,所以平行平面.
(2)证明:由题意可知的关系在折叠前后都没有改变.
因为在折叠前,由于折叠后,点,所以
因为,所以平面.
(3)
.
8、在如图所示的几何体中,四边形是正方形,⊥平面,∥,、、分别为、、的中点,且.
(1)求证:平面⊥平面;
(2)求三棱锥与四棱锥的体积之比.
【答案】(1)证明:∵平面,∥,
∴平面,
又平面,∴,
∵为正方形,∴DC.
∵,∴平面.
在中,因为分别为、的中点,
∴∥,∴平面.
又平面,∴平面平面.
(2)不妨设,∵为正方形,∴,
又∵平面,
所以==.
由于平面,且∥,
所以即为点到平面的距离,
三棱锥=××2=.
所以.
9、如图,在底面是直角梯形的四棱锥S-ABCD中,
S
C
A
D
B
(1)求四棱锥S-ABCD的体积;
(2)求证:
(3)求SC与底面ABCD所成角的正切值。
【答案】(1)解:
(2)证明:
又
(3)解:连结AC,则就是SC与底面ABCD所成的角。
在三角形SCA中,SA=1,AC=,
10.如图,四棱锥中,底面为矩形,底面,,,点在侧棱上,。
(I)证明:是侧棱的中点;
求二面角的大小。
【答案】分别以DA、DC、DS为x、y、z轴如图建立空间直角坐标系D—xyz,则。
S
A
B
C
D
M
z
x
y
(Ⅰ)设,则
又
故,即
,解得,
所以是侧棱的中点。
(Ⅱ)由(Ⅰ)得,又,,
设分别是平面、的法向量,则
且,即且
分别令得,即
,
∴
二面角的大小。
11、如图,直三棱柱ABC-A1B1C1中,AB⊥AC,D、E分别为AA1、B1C的中点,DE⊥平面BCC1(Ⅰ)证明:AB=AC (Ⅱ)设二面角A-BA
C
B
A1
B1
C1
D
E
D-C为60°,求B1C与平面BCD所成的角的大小
【答案】(Ⅰ)以A为坐标原点,射线AB为x轴的正半轴,建立如图所示的直角坐标系A—xyz。
设B(1,0,0),C(0,b,0),D(0,0,c),则(1,0,2c),E(,,c).
于是=(,,0),=(-1,b,0).由DE⊥平面知DE⊥BC, =0,求得b=1,所以 AB=AC。
(Ⅱ)设平面BCD的法向量则
又=(-1,1, 0),
=(-1,0,c),故
令x=1, 则y=1, z=,=(1,1, )。
又平面的法向量=(0,1,0)
由二面角为60°知,=60°,
故 °,求得
于是 ,
,
°
所以与平面所成的角为30°
12、如图,平面,,,,分别为的中点.(I)证明:平面;(II)求与平面所成角的正弦值.
【答案】(Ⅰ)证明:连接, 在中,分别是的中点,所以, 又,所以,又平面ACD ,DC平面ACD, 所以平面ACD
(Ⅱ)在中,,所以
而DC平面ABC,,所以平面ABC
而平面ABE, 所以平面ABE平面ABC, 所以平面ABE
由(Ⅰ)知四边形DCQP是平行四边形,所以
所以平面ABE, 所以直线AD在平面ABE内的射影是AP,
所以直线AD与平面ABE所成角是
在中, ,
所以
13、如图,四棱锥的底面是正方形,,点E在棱PB上.(Ⅰ)求证:平面; (Ⅱ)当且E为PB的中点时,求AE与平面PDB所成的角的大小.
【答案】(Ⅰ)∵四边形ABCD是正方形,∴AC⊥BD,
∵,
∴PD⊥AC,∴AC⊥平面PDB,
∴平面.
(Ⅱ)设AC∩BD=O,连接OE,
由(Ⅰ)知AC⊥平面PDB于O,
∴∠AEO为AE与平面PDB所的角,
∴O,E分别为DB、PB的中点,
∴OE//PD,,又∵,
∴OE⊥底面ABCD,OE⊥AO,
在Rt△AOE中,,
∴,即AE与平面PDB所成的角的大小为.
14、如图,在四棱锥中,底面是矩形,平面,,.以的中点为球心、为直径的球面交于点.
(1)求证:平面⊥平面;
(2)求直线与平面所成的角;
(3)求点到平面的距离.
【答案】(1)证:依题设,M在以BD为直径的球面上,则BM⊥PD.
因为PA⊥平面ABCD,则PA⊥AB,又AB⊥AD,
所以AB⊥平面PAD,则AB⊥PD,因此有PD⊥平面ABM,所以平面ABM⊥平面PCD.
(2)设平面ABM与PC交于点N,因为AB∥CD,所以AB∥平面PCD,则AB∥MN∥CD,
由(1)知,PD⊥平面ABM,则MN是PN在平面ABM上的射影,
所以 就是与平面所成的角,
且
所求角为
(3)因为O是BD的中点,则O点到平面ABM的距离等于D点到平面ABM距离的一半,由(1)知,PD⊥平面ABM于M,则|DM|就是D点到平面ABM距离.
因为在Rt△PAD中,,,所以为中点,,则O点到平面ABM的距离等于。
15、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,(I)求证:;
(II)设线段、的中点分别为、,求证: ∥
(III)求二面角的大小。
【答案】(I)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面BCE.
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,
∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小为
16、如图,四棱锥S-ABCD的底面是正方形,SD⊥平面ABCD,SD=AD=a,点E是SD上的点,且DE=a(0<≦1). (Ⅰ)求证:对任意的(0、1),都有AC⊥BE:
(Ⅱ)若二面角C-AE-D的大小为600C,求的值。
【答案】(Ⅰ)证发1:连接BD,由底面是正方形可得ACBD。
SD平面ABCD,BD是BE在平面ABCD上的射影,
由三垂线定理得ACBE.
(II)SD平面ABCD,CD平面ABCD, SDCD.
又底面ABCD是正方形, CDAD,又SDAD=D,CD平面SAD。
过点D在平面SAD内做DFAE于F,连接CF,则CFAE,
故CFD是二面角C-AE-D 的平面角,即CFD=60°
在Rt△ADE中,AD=, DE= , AE= 。
于是,DF=
在Rt△CDF中,由cot60°=
得, 即=3
, 解得=
17、如图3,在正三棱柱中,AB=4, ,点D是BC的中点,点E在AC上,且DEE.(Ⅰ)证明:平面平面; (Ⅱ)求直线AD和平面所成角的正弦值。
【答案】(Ⅰ)如图所示,由正三棱柱的性质知平面.
又DE平面ABC,所以DE.而DEE,,
所以DE⊥平面.又DE 平面,
故平面⊥平面.
(Ⅱ) 过点A作AF垂直于点,
连接DF.由(Ⅰ)知,平面⊥平面,
所以AF平面,故是直线AD和
平面所成的角。 因为DE,
所以DEAC.而ABC是边长为4的正三角形,
于是AD=,AE=4-CE=4-=3.
又因为,所以E= = 4,
, .
即直线AD和平面所成角的正弦值为 .
18、如图,正方形所在平面与平面四边形所在平面互相垂直,△是等腰直角三角形,
(I)求证:;
(II)设线段、的中点分别为、,
求证: ∥
(III)求二面角的大小。
【答案】
(I)因为平面ABEF⊥平面ABCD,BC平面ABCD,BC⊥AB,平面ABEF∩平面ABCD=AB,
所以BC⊥平面ABEF.
所以BC⊥EF.
因为⊿ABE为等腰直角三角形,AB=AE,
所以∠AEB=45°,
又因为∠AEF=45,
所以∠FEB=90°,即EF⊥BE.
因为BC平面ABCD, BE平面BCE,
BC∩BE=B
所以
(II)取BE的中点N,连结CN,MN,则MNPC
∴ PMNC为平行四边形,所以PM∥CN.
∵ CN在平面BCE内,PM不在平面BCE内,
∴ PM∥平面BCE.
(III)由EA⊥AB,平面ABEF⊥平面ABCD,易知EA⊥平面ABCD.
作FG⊥AB,交BA的延长线于G,则FG∥EA.从而FG⊥平面ABCD,
作GH⊥BD于H,连结FH,则由三垂线定理知BD⊥FH.
∴ ∠FHG为二面角F-BD-A的平面角.
∵ FA=FE,∠AEF=45°,∠AEF=90°, ∠FAG=45°.
设AB=1,则AE=1,AF=,则
在Rt⊿BGH中, ∠GBH=45°,BG=AB+AG=1+=,
,
在Rt⊿FGH中, ,
∴ 二面角的大小为
19、如题(18)图,在五面体中,∥,,,四边形为平行四边形,平面,.求:
(Ⅰ)直线到平面的距离;
(Ⅱ)二面角的平面角的正切值.
【答案】
(Ⅰ)平面, AB到面的距离等于点A到面的距离,过点A作于G,因∥,故;又平面,由三垂线定理可知,,故,知,所以AG为所求直线AB到面的距离。
在中,
由平面,得AD,从而在中,
。即直线到平面的距离为。
(Ⅱ)由己知,平面,得AD,又由,知,故平面ABFE
,所以,为二面角的平面角,记为.
在中, ,由得,,从而
在中, ,故
所以二面角的平面角的正切值为.
20、如图,四棱锥PABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.
(1)证明:PA⊥BD;
(2) 设PD=AD,求二面角A-PB-C的余弦值.
【答案】
(1)因为∠DAB=60°,AB=2AD,由余弦定理得.
从而BD2+AD2=AB2,故BD⊥AD.
又PD⊥底面ABCD,可得BD⊥PD.
所以BD⊥平面PAD.故PA⊥BD.
(2)如图,以D为坐标原点,AD的长为单位长,射线DA为x轴的正半轴建立空间直角坐标系Dxyz.则A(1,0,0),B(0,,0),C(-1,,0),P(0,0,1).
=(-1,,0),=(0,,-1),=(-1,0,0).
设平面PAB的法向量为n=(x,y,z),则
即
因此可取n=(,1,).
设平面PBC的法向量为m,则
可取m=(0,-1,-),.
故二面角APBC的余弦值为.
展开阅读全文