1、高一数学必修5数列复习提纲 定鼎教育 数列复习1.数列的通项求数列通项公式的常用方法:(1)观察与归纳法:先观察哪些因素随项数的变化而变化,哪些因素不变:分析符号、数字、字母与项数在变化过程中的联系,初步归纳公式。(2)公式法:等差数列与等比数列。(3)利用与的关系求:(4)构造新数列法;(5)逐项作差求和法;(6)逐项作商求积法2.等差数列中:(1)等差数列公差的取值与等差数列的单调性;(2);(3)也成等差数列; (4)两等差数列对应项和(差)组成的新数列仍成等差数列.(5)仍成等差数列.(6),.(7)若,则;若,则,;.(8)“首正”的递减等差数列中,前项和的最大值是所有非负项之和;(
2、9)等差中项:若成等差数列,则叫做的等差中项。(10)判定数列是否是等差数列的主要方法有:定义法、中项法、通项法、和式法、图像法。3.等比数列中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性。(2);(3)、成等比数列;成等比数列成等比数列.(4)两等比数列对应项积(商)组成的新数列仍成等比数列.(5)成等比数列.(6).(7);.(8)“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;(9)并非任何两数总有等比中项. 仅当实数同号时,实数存在等比中
3、项.对同号两实数 的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时)。(10)判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法4.等差数列与等比数列的联系:各项都不为零的常数列既是等差数列又是等比数列5.数列求和的常用方法:(1)公式法:等差数列求和公式;等比数列求和公式,.(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这
4、也是等差数列前和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有: , 【典型例题】(一)研究等差等比数列的有关性质1. 研究通项的性质例题1. 已知数列满足. (1)求;(2)证明:.解:(1). (2)证明:由已知,故, 所以证得. 例题2.
5、 数列的前项和记为()求的通项公式;()等差数列的各项为正,其前项和为,且,又成等比数列,求. 解:()由可得,两式相减得:,又 故是首项为1,公比为3的等比数列 ()设的公比为,由得,可得,可得故可设,又,由题意可得,解得等差数列的各项为正, 例题3. 已知数列的前三项与数列的前三项对应相同,且对任意的都成立,数列是等差数列. 求数列与的通项公式;是否存在,使得,请说明理由. 点拨:(1)左边相当于是数列前n项和的形式,可以联想到已知求的方法,当时,. (2)把看作一个函数,利用函数的思想方法来研究的取值情况. 解:(1)已知)时,)得,求得,在中令,可得得,所以N*). 由题意,所以,数列
6、的公差为,). (2),当时,单调递增,且,所以时, 又,所以,不存在,使得. 例题4. 设各项均为正数的数列an和bn满足:an、bn、an+1成等差数列,bn、an+1、bn+1成等比数列,且a1 = 1, b1 = 2 , a2 = 3 ,求通项an,bn 解: 依题意得: 2bn+1 = an+1 + an+2 a2n+1 = bnbn+1 an、bn为正数, 由得, 代入并同除以得: , 为等差数列 b1 = 2 , a2 = 3 , , ,当n2时,又a1 = 1,当n = 1时成立, 2. 研究前n项和的性质例题5. 已知等比数列的前项和为,且. (1)求、的值及数列的通项公式;
7、(2)设,求数列的前项和.解:(1)时,.而为等比数列,得,又,得,从而.又.(2), ) ,得,.例题6. 数列是首项为1000,公比为的等比数列,数列满足 ,(1)求数列的前项和的最大值;(2)求数列的前项和. 解:(1)由题意:,数列是首项为3,公差为的等差数列,由,得,数列的前项和的最大值为. (2)由(1)当时,当时,当时,当时,. 例题7. 已知递增的等比数列满足,且是,的等差中项. (1)求的通项公式;(2)若,求使成立的的最小值. 解:(1)设等比数列的公比为q(q1),由 a1q+a1q2+a1q3=28,a1q+a1q3=2(a1q2+2),得:a1=2,q=2或a1=32
8、,q=(舍)an=22(n1)=2n(2) ,Sn=(12+222+323+n2n)2Sn=(122+223+n2n+1),Sn=2+22+23+2nn2n+1=(n1)2n+12,若Sn+n 2n+130成立,则2n+132,故n4,n的最小值为5. 例题8. 已知数列的前n项和为Sn,且成等差数列,. 函数. (I)求数列的通项公式;(II)设数列满足,记数列的前n项和为Tn,试比较的大小. 解:(I)成等差数列, 当时,. 得:,当n=1时,由得, 又是以1为首项3为公比的等比数列,(II), ,比较的大小,只需比较与312的大小即可. 当时,当时,当时,. 3. 研究生成数列的性质例题
9、9. (I) 已知数列,其中,且数列为等比数列,求常数;(II) 设、是公比不相等的两个等比数列,证明数列不是等比数列. 解:()因为cn+1pcn是等比数列,故有(cn+1pcn)2=( cn+2pcn+1)(cnpcn1),将cn=2n3n代入上式,得2n1+3n1p(2n3n)2=2n2+3n2p(2n+13n+1)2n+3np(2n13n1), 即(2p)2n+(3p)3n2=(2p)2n+1+(3p)3n+1 (2p)2n1+(3p)3n1,整理得(2p)(3p)2n3n=0,解得p=2或p=3. ()设an、bn的公比分别为p、q,pq,cn=an+bn. 为证cn不是等比数列只需
10、证c1c3. 事实上,=(a1pb1q)2=p2q22a1b1pq,c1c3=(a1b1)(a1 p2b1q2)= p2q2a1b1(p2q2). 由于pq,p2q22pq,又a1、b1不为零,因此c1c3,故cn不是等比数列. 例题10. n2( n4)个正数排成n行n列:其中每一行的数成等差数列,每一列的数成等比数列,并且所有公比相等已知a24=1,求S=a11 + a22 + a33 + + ann 解: 设数列的公差为d, 数列(i=1,2,3,n)的公比为q则= a11 + (k1)d , akk = a11 + (k1)dqk1依题意得:,解得:a11 = d = q = 又n2个
11、数都是正数, a11 = d = q = , akk = ,两式相减得:例题11. 已知函数的图象经过点和,记(1)求数列的通项公式;(2)设,若,求的最小值;(3)求使不等式对一切均成立的最大实数.解:(1)由题意得,解得, (2)由(1)得, 得. ,设,则由得随的增大而减小时,又恒成立, (3)由题意得恒成立 记,则是随的增大而增大 的最小值为,即.(二)证明等差与等比数列1. 转化为等差等比数列.例题12. 数列中,且满足,.求数列的通项公式;设,求;设=,是否存在最大的整数,使得对任意,均有成立?若存在,求出的值;若不存在,请说明理由. 解:(1)由题意,为等差数列,设公差为,由题意
12、得,.(2)若,时,故 (3),若对任意成立,即对任意成立,的最小值是,的最大整数值是7. 即存在最大整数使对任意,均有例题13. 已知等比数列与数列满足N*. (1)判断是何种数列,并给出证明;(2)若. 解:(1)设的公比为q,。所以是以为公差的等差数列. (2)所以由等差数列性质可得2. 由简单递推关系证明等差等比数列例题14. 已知数列和满足:,(),且是以为公比的等比数列. (I)证明:;(II)若,证明:数列是等比数列;(III)求和:. 解法1:(I)证:由,有,. (II)证:,. 是首项为5,公比为的等比数列. (III)解:由(II)得,于是. 当时,. 当时,. 故解法2
13、:(I)同解法1(I). (II)证: ,又,是首项为5,公比为的等比数列. (III)由解法1中(II)的类似方法得,. . 例题15. 设数列(1)证明:数列是等比数列;(2)设数列的公比,数列满足,bn=f (bn1)(nN*,n2),求数列的通项公式;(3)设,求数列的前n项和n. (1)证明:由相减得:数列是等比数列(2)解:是首项为,公差为1的等差数列,. . (3)解:时 得:所以:. 例题16. 的各个顶点分别为,设为线段的中点,为线段OC的中点,为线段的中点. 对每一个正整数为线段的中点. 令的坐标为,. (1)求及;(2)证明:(3)记,证明:是等比数列. (1)解:因为y
14、1=y2=y4=1, y3=,y5=,所以 得a1=a2=a3=2. 又由,对任意的正整数n有an+1=an 恒成立,且a1=2, 所以an为常数数列, an=2,(n为正整数)(2)证明:根据, 及=an=2, 易证得yn+4=1(3)证明:因为bn+1=(1)(1)=,又由b1=1y4=, 所以bn是首项为,公比为的等比数列. 【模拟试题】一、填空题1. 在等差数列a中,已知a=2,a+a=13,则a+a+a等于= . 2. 已知数列的通项,则其前项和 . 3. 首项为24的等差数列,从第10项开始为正,则公差的取值范围是 . 4. 在等比数列中,和 是二次方程 的两个根,则的值为 . 5
15、. 等差数列an中,a1=1,a3+a5=14,其前n项和Sn=100,则n= . 6. 等差数列an的前m项和为30,前2m项的和为100,求它的前3m项的和为_ 7. 已知两个等差数列和的前项和分别为A和,且,= ,若为正整数,n的取值个数为_。8. 已知数列对于任意,有,若,则. 9. 记数列所有项的和为,第二项及以后各项的和为,第三项及以后各项的和为 ,第项及以后各项的和为,若,则等于 . 10. 等差数列共有项,其中奇数项之和为319,偶数项之和为290,则其中间项为_.11. 等差数列中,若且,则的值为 .12. 设为等差数列的前项和. 已知,则等于 . 13. 已知函数定义在正整
16、数集上,且对于任意的正整数,都有,且,则_ _. 14. 三个数成等比数列,且,则b的取值范围是 . 15. 等差数列中,前项和为,首项. (1)若,求(2) 设,求使不等式的最小正整数的值. 点拨:在等差数列中知道其中三个就可以求出另外一个,由已知可以求出首项与公差,把分别用首项与公差,表示即可. 对于求和公式,采用哪一个都可以,但是很多题目要视具体情况确定采用哪一个可能更简单一些. 例如:已知判断的正负. 问题2在思考时要注意加了绝对值时负项变正时,新的数列首项是多少,一共有多少项. 16. 等差数列的前项和为,. (I)求数列的通项与前项和为;(II)设(),求证:数列中任意不同的三项都
17、不可能成为等比数列. 17. 在直角坐标平面上有一点列,对一切正整数n,点位于函数的图象上,且的横坐标构成以为首项,为公差的等差数列. 求点的坐标;设抛物线列中的每一条的对称轴都垂直于轴,第条抛物线的顶点为,且过点,设与抛物线相切于的直线的斜率为,求:. 设,等差数列的任一项,其中是中的最大数,求的通项公式. 18. 已知数列满足,(1)求数列的通项公式;(2)若数列满足(nN*),证明:是等差数列.【试题答案】1. 422. 3. 4. 5. 106. 2107. 8.5;5个解法一:点拨 利用等差数列的求和公式及等差数列的性质“若,则”解析:=解法2: 点拨 利用“若为等差数列,那么”这个
18、结论,根据条件找出和的通项. 解析:可设,则,则=由上面的解法2可知=,显然只需使为正整数即可,故,共5个. 点评:对等差数列的求和公式的几种形式要熟练掌握,根据具体的情况能够灵活应用. 反思:解法2中,若是填空题,比例常数k可以直接设为1. 8. 49. 解:. 10. 解:依题意,中间项为,于是有解得.11. 解:由题设得,而,又,. 12. 解:, ,. 。13. 解:由知函数当从小到大依次取值时对应的一系列函数值组成一个等差数列,形成一个首项为2,公差为4的等差数列,. 14. 解:设,则有. 当时,而,;当时,即,而,则,故. 15. 解:(1)由,得:,又由. 即,得到. (2)由若5,则,不合题意故5,即,所以15,使不等式成立的最小正整数的值为1516. 解答:(I)由已知得,故. ()由()得. 假设数列中存在三项(互不相等)成等比数列,则. 即. ,. 与矛盾. 17. 解:(1)(2)的对称轴垂直于轴,且顶点为. 设的方程为:把代入上式,得,的方程为:. ,=.(3),T 中最大数. 设公差为,则,由此得18. (1)解:是以为首项,2为公比的等比数列. 即 .(2)证: ,得即 ,得 即 是等差数列. 第16页 共16页