资源描述
1、垂直于同一条直线的两条直线一定
A、平行 B、相交 C、异面 D、以上都有可能
2、a,b,c表示直线,M表示平面,给出下列四个命题:①若a∥M,b∥M,则a∥b;②若bM,
a∥b,则a∥M;③若a⊥c,b⊥c,则a∥b;④若a⊥M,b⊥M,则a∥b.其中正确命题的个数有
A、0个 B、1个 C、2个 D、3个
3.对两条不相交的空间直线a与b,必存在平面α,使得( )
A.a⊂α,b⊂α B.a⊂α,b∥α
C.a⊥α,b⊥α D.a⊂α,b⊥α
4.下面四个命题:
①若直线a,b异面,b,c异面,则a,c异面;
②若直线a,b相交,b,c相交,则a,c相交;
③若a∥b,则a,b与c所成的角相等;
④若a⊥b,b⊥c,则a∥c.
其中真命题的个数为( )
A.4 B.3 C.2 D.1
5.在正方体ABCD-A1B1C1D1中,E,F分别是线段A1B1,B1C1上的不与端点重合的动点,如果A1E=B1F,有下面四个结论:
①EF⊥AA1;②EF∥AC;③EF与AC异面;④EF∥平面ABCD.
其中一定正确的有( )
A.①② B.②③ C.②④ D.①④
6.设a,b为两条不重合的直线,α,β为两个不重合的平面,下列命题中为真命题的是( )
A.若a,b与α所成的角相等,则a∥b
B.若a∥α,b∥β,α∥β,则a∥b
C.若a⊂α,b⊂β,a∥b,则α∥β
D.若a⊥α,b⊥β,α⊥β,则a⊥b
7.已知平面α⊥平面β,α∩β=l,点A∈α,A∉l,直线AB∥l,直线AC⊥l,直线m∥α,n∥β,则下列四种位置关系中,不一定成立的是( )
A.AB∥m B.AC⊥m
C.AB∥β D.AC⊥β
1. 如图,三棱柱ABC-A1B1C1中,侧棱垂直底面,∠ACB=90°,AC=BC=AA1,D是棱AA1的中点
(I)证明:平面BDC1⊥平面BDC
(Ⅱ)平面BDC1分此棱柱为两部分,求这两部分体积的比.
C
B
A
D
C1
A1
2. 如图5所示,在四棱锥中,平面,,,是的中点,是上的点且,为△中边上的高.
(1)证明:平面;
(2)若,,,求三棱锥的体积;
(3)证明:平面.
3. 如图,在直三棱柱中,,分别是棱上的点(点 不同于点),且为的中点.
求证:(1)平面平面;
(2)直线平面.
4. 在如图所示的几何体中,四边形是正方形,
平面,,、、分别为、、的中点,且.
(I)求证:平面平面;
(II)求三棱锥与四棱锥的体积
之比.
5.如图,在多面体ABCDEF中,四边形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H为BC的中点,
(Ⅰ)求证:FH∥平面EDB;
(Ⅱ)求证:AC⊥平面EDB;
(Ⅲ)求四面体B—DEF的体积;
6.如图4,在边长为1的等边三角形中,分别是边上的点,,是的中点,与交于点,将沿折起,得到如图5所示的三棱锥,其中.
(1) 证明://平面;
(2) 证明:平面;
(3) 当时,求三棱锥的体积.
7.如图,在四棱锥中,,,,平面底面,,和分别是和的中点,求证:
(1)底面;(2)平面;(3)平面平面
C
B
A
D
C1
A1
1. 【解析】(Ⅰ)由题设知BC⊥,BC⊥AC,,∴面, 又∵面,∴,
由题设知,∴=,即,
又∵, ∴⊥面, ∵面,∴面⊥面;
(Ⅱ)设棱锥的体积为,=1,由题意得,==,
由三棱柱的体积=1,
∴=1:1, ∴平面分此棱柱为两部分体积之比为1:1.
2. 【解析】(1)证明:因为平面,
所以。
因为为△中边上的高,所以。
因为,所以平面。
(2)连结,取中点,连结。
因为是的中点,所以。
因为平面,所以平面。
则,
。
(3)证明:取中点,连结,。
因为是的中点,所以。
因为,所以,所以四边形是平行四边形,所以。
因为,所以。
因为平面,所以。
因为,所以平面,所以平面。
3. 【答案】证明:(1)∵是直三棱柱,∴平面。
又∵平面,∴。
又∵平面,∴平面。
又∵平面,∴平面平面 (2)∵,为的中点,∴。
又∵平面,且平面,∴。
又∵平面,,∴平面。
由(1)知,平面,∴∥。
又∵平面平面,∴直线平面
4. 【解析】(I)证明:由已知MA 平面ABCD,PD ∥MA,所以PD∈平面ABCD,又BC∈平面ABCD, 因为四边形ABCD为正方形,所以 PD⊥ BC
又PD∩DC=D,因此BC⊥平面PDC
在△PBC中,因为G平分为PC的中点,所以GF∥BC,因此GF⊥平面PDC
又GF ∈平面EFG,所以平面EFG⊥平面PDC.
(Ⅱ )解:因为PD⊥平面ABCD,四边形ABCD为正方形,不妨设MA=1,
则 PD=AD=2,ABCD,所以 Vp-ABCD=1/3S正方形ABCD,PD=8/3
由于DA⊥面MAB的距离, 所以DA即为点P到平面MAB的距离,
三棱锥 Vp-MAB=1/3×1/2×1×2×2=2/3,所以 Vp-MAB:Vp-ABCD=1:4。
5.
6. 【答案】(1)在等边三角形中,
,在折叠后的三棱锥中
也成立, ,平面,
平面,平面;
(2)在等边三角形中,是的中点,所以①,.
在三棱锥中,,②
;
(3)由(1)可知,结合(2)可得.
7. 【答案】(I)因为平面PAD⊥平面ABCD,且PA垂直于这个平面的交线AD
所以PA垂直底面ABCD.
(II)因为AB∥CD,CD=2AB,E为CD的中点 ,所以AB∥DE,且AB=DE ,所以ABED为平行四边形,
所以BE∥AD,又因为BE平面PAD,AD平面PAD ,所以BE∥平面PAD.
(III)因为AB⊥AD,而且ABED为平行四边形 ,
所以BE⊥CD,AD⊥CD,
由(I)知PA⊥底面ABCD,
所以PA⊥CD,所以CD⊥平面PAD ,所以CD⊥PD,
因为E和F分别是CD和PC的中点
所以PD∥EF,所以CD⊥EF,所以CD⊥平面BEF,所以平面BEF⊥平面PCD.
展开阅读全文