1、此文档仅供收集于网络,如有侵权请联系网站删除2-2 杆AC、BC在C处铰接,另一端均与墙面铰接,如图所示,F1和F2作用在销钉C上,F1=445 N,F2=535 N,不计杆重,试求两杆所受的力。CcABF2F14330o解:(1) 取节点C为研究对象,画受力图,注意AC、BC都为二力杆, FACFBCCcF2F1xy(2) 列平衡方程:AC与BC两杆均受拉。2-3 水平力F作用在刚架的B点,如图所示。如不计刚架重量,试求支座A和D 处的约束力。DAa2aCB解:(1) 取整体ABCD为研究对象,受力分析如图,画封闭的力三角形:FFDFADACBFFAFD(2) 由力三角形得2-4 在简支梁A
2、B的中点C作用一个倾斜45o的力F,力的大小等于20KN,如图所示。若梁的自重不计,试求两支座的约束力。AB45oF45oC解:(1) 研究AB,受力分析并画受力图:AB45oFFBFACDEFFBFAdce(2) 画封闭的力三角形:相似关系: 几何尺寸:求出约束反力:3-5 四连杆机构在图示位置平衡。已知OA=60cm,BC=40cm,作用BC上的力偶的力偶矩大小为M2=1N.m,试求作用在OA上力偶的力偶矩大小M1和AB所受的力FAB所受的力。各杆重量不计。OACBM2M130o解:(1) 研究BC杆,受力分析,画受力图:CBM230oFBFC列平衡方程:(2) 研究AB(二力杆),受力如
3、图:ABFBFA可知:(3) 研究OA杆,受力分析,画受力图:OAM1FAFO列平衡方程:4-1 试求题4-1图所示各梁支座的约束力。设力的单位为kN,力偶矩的单位为kNm,长度单位为m,分布载荷集度为kN/m。(提示:计算非均布载荷的投影和与力矩和时需应用积分)。解:ABC12q =2M=330oFBFAxFA yyxdx2dxx(c):(1) 研究AB杆,受力分析,画出受力图(平面任意力系); (2) 选坐标系Axy,列出平衡方程;ABCD0.80.80.8200.8M=8q=20FBFAxFA yyx20dxxdx (e):(1) 研究CABD杆,受力分析,画出受力图(平面任意力系);(
4、2) 选坐标系Axy,列出平衡方程;约束力的方向如图所示。4-5 AB梁一端砌在墙内,在自由端装有滑轮用以匀速吊起重物D,设重物的重量为G,又AB长为b,斜绳与铅垂线成a角,求固定端的约束力。ABaCDbABaCGbFAxFA yyxMAG解:(1) 研究AB杆(带滑轮),受力分析,画出受力图(平面任意力系);(2) 选坐标系Bxy,列出平衡方程;约束力的方向如图所示。ABCDEFF45o4-20 AB、AC、DE三杆连接如题4-20图所示。DE杆上有一插销F套在AC杆的导槽内。求在水平杆DE的E端有一铅垂力F作用时,AB杆上所受的力。设AD=DB,DF=FE,BC=DE,所有杆重均不计。解:
5、(1) 整体受力分析,根据三力平衡汇交定理,可知B点的约束力一定沿着BC方向;(2) 研究DFE杆,受力分析,画出受力图(平面任意力系);DEFFD yFDx45oBFF(3) 分别选F点和B点为矩心,列出平衡方程;(4) 研究ADB杆,受力分析,画出受力图(平面任意力系);ABDFD yFDxFA yFAxFBxy(5) 选坐标系Axy,列出平衡方程;x 200 50 50 150 y (a)yx801201010(b)6-18 试求图示两平面图形形心C的位置。图中尺寸单位为mm。x2005050150yC2CS2解:(a) (1) 将T形分成上、下二个矩形S1、S2,形心为C1、C2;(2
6、) 在图示坐标系中,y轴是图形对称轴,则有:xC=0(3) 二个矩形的面积和形心;(4) T形的形心;C1S1yx801201010C2CS2(b) (1) 将L形分成左、右二个矩形S1、S2,形心为C1、C2; (3) 二个矩形的面积和形心;(4) L形的形心;8-5 图示阶梯形圆截面杆,承受轴向载荷F1=50 kN与F2作用,AB与BC段的直径分别为d1=20 mm和d2=30 mm ,如欲使AB与BC段横截面上的正应力相同,试求载荷F2之值。BAF1F2C2121解:(1) 用截面法求出1-1、2-2截面的轴力; (2) 求1-1、2-2截面的正应力,利用正应力相同;8-6 阶梯状直杆受
7、力如图所示。已知AD段横截面面积AAD=1000mm2,DB段横截面面积ADB=500mm2,材料的弹性模量E=200GPa。求该杆的总变形量lAB。解:由截面法可以计算出AC,CB段轴力FNAC=-50kN(压),FNCB=30kN(拉)。8.10 某悬臂吊车如图所示。最大起重荷载G=20kN,杆BC为Q235A圆钢,许用应力=120MPa。试按图示位置设计BC杆的直径d。 8-14 图示桁架,杆1与杆2的横截面均为圆形,直径分别为d1=30 mm与d2=20 mm,两杆材料相同,许用应力=160 MPa。该桁架在节点A处承受铅直方向的载荷F=80 kN作用,试校核桁架的强度。FABC300
8、45012FAyx300450FACFAB解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;(2) 列平衡方程 解得:(2) 分别对两杆进行强度计算;所以桁架的强度足够。8-15 图示桁架,杆1为圆截面钢杆,杆2为方截面木杆,在节点A处承受铅直方向的载荷F作用,试确定钢杆的直径d与木杆截面的边宽b。已知载荷F=50 kN,钢的许用应力S =160 MPa,木的许用应力W =10 MPa。FABCl45012解:(1) 对节点A受力分析,求出AB和AC两杆所受的力;Ayx450FACFABFFABFACF(2) 运用强度条件,分别对两杆进行强度计算;所以可以确定钢杆的直径为20 mm,木
9、杆的边宽为84 mm。8-16 图示螺栓受拉力F作用。已知材料的许用切应力和许用拉应力的关系为=0.6。试求螺栓直径d与螺栓头高度h的合理比例。8-18 矩形截面的木拉杆的接头如图所示。已知轴向拉力F=50kN,截面宽度b=250mm,木材的顺纹许用挤压应力bs=10MPa,顺纹许用切应力=1MPa。求接头处所需的尺寸l和a。8-20 图示联接构件中D=2d=32mm,h=12mm,拉杆材料的许用应力=120MPa,=70MPa,bs=170MPa。试求拉杆的许用荷载F8-31 图示木榫接头,F=50 kN,试求接头的剪切与挤压应力。FF10010010040FF100解:(1) 剪切实用计算
10、公式:(2) 挤压实用计算公式:8-32 图示摇臂,承受载荷F1与F2作用,试确定轴销B的直径d。已知载荷F1=50 kN,F2=35.4 kN,许用切应力 =100 MPa,许用挤压应力bs =240 MPa。450450BACF1F28040DDFBD-Dd6610解:(1) 对摇臂ABC进行受力分析,由三力平衡汇交定理可求固定铰支座B的约束反力; (2) 考虑轴销B的剪切强度;考虑轴销B的挤压强度;(3) 综合轴销的剪切和挤压强度,取8-33 图示接头,承受轴向载荷F作用,试校核接头的强度。已知:载荷F=80 kN,板宽b=80 mm,板厚=10 mm,铆钉直径d=16 mm,许用应力=
11、160 MPa,许用切应力 =120 MPa,许用挤压应力bs =340 MPa。板件与铆钉的材料相等。FFFFbd解:(1) 校核铆钉的剪切强度;(2) 校核铆钉的挤压强度;(3) 考虑板件的拉伸强度;对板件受力分析,画板件的轴力图;FF/4bF/4F/4F/41122FFNx(+)F/43F/4校核1-1截面的拉伸强度校核2-2截面的拉伸强度 所以,接头的强度足够。9-4 某传动轴,转速n=300 r/min(转/分),轮1为主动轮,输入的功率P1=50 kW,轮2、轮3与轮4为从动轮,输出功率分别为P2=10 kW,P3=P4=20 kW。(1) 试画轴的扭矩图,并求轴的最大扭矩。(2)
12、 若将轮1与论3的位置对调,轴的最大扭矩变为何值,对轴的受力是否有利。8008008001432P4P3P2P1解:(1) 计算各传动轮传递的外力偶矩;(2) 画出轴的扭矩图,并求轴的最大扭矩;T(Nm) x(+)318.31273.4636.7(-)(3) 对调论1与轮3,扭矩图为;T(Nm) x(+)636.7955636.7(-)所以对轴的受力有利。9-5 阶梯轴AB如图所示,AC段直径d1=40mm,CB段直径d2=70mm,外力偶矩MB=1500Nm,MA=600Nm, MC=900Nm,G=80GPa,=60MPa,/=2()/m。试校核该轴的强度和刚度。 9-7 图示圆轴AB所受
13、的外力偶矩Me1=800Nm,Me2=1200Nm,Me3=400Nm,G=80GPa,l2=2l1=600mm =50MPa,/=0.25()/m。试设计轴的直径。 MllMACB9-16 图示圆截面轴,AB与BC段的直径分别为d1与d2,且d1=4d2/3,试求轴内的最大切应力与截面C的转角,并画出轴表面母线的位移情况,材料的切变模量为G。解:(1) 画轴的扭矩图;2MTx(+)M (2) 求最大切应力;比较得(3) 求C截面的转角;9-18 题9-16所述轴,若扭力偶矩M=1 kNm,许用切应力 =80 MPa,单位长度的许用扭转角=0.5 0/m,切变模量G=80 GPa,试确定轴径。
14、解:(1) 考虑轴的强度条件;(2) 考虑轴的刚度条件; (3) 综合轴的强度和刚度条件,确定轴的直径;11-6 图示悬臂梁,横截面为矩形,承受载荷F1与F2作用,且F1=2F2=5 kN,试计算梁内的最大弯曲正应力,及该应力所在截面上K点处的弯曲正应力。401mF1Cy1mF280Kz30解:(1) 画梁的剪力图、弯矩图xFQ(-)(+)7.5kNxM5kN (2) 最大弯矩(位于固定端):(3) 计算应力:最大应力:K点的应力:11-8 矩形截面简支梁受载如图所示,试分别求出梁竖放和平放时产生的最大正应力。 11-9 简支梁受载如图所示,已知F=10kN,q=10kN/m,l=4m,a=1
15、m,=160MPa。试设计正方形截面和矩形截面(h=2b),并比较它们截面面积的大小。 11-15 图示矩形截面钢梁,承受集中载荷F与集度为q的均布载荷作用,试确定截面尺寸b。已知载荷F=10 kN,q=5 N/mm,许用应力 =160 Mpa。1mmBAqF1mm1mmb2bRARB解:(1) 求约束力:(2) 画出弯矩图:xM3.75kNm2.5kNm(+)(-)(3) 依据强度条件确定截面尺寸解得: 15-9 图示矩形截面压杆,有三种支持方式。杆长l300 mm,截面宽度b20 mm,高度h12 mm,弹性模量E70 GPa,p50,030,中柔度杆的临界应力公式为cr382 MPa (
16、2.18 MPa)(b)0l(c)lFl(a)AAA-AhbzyFF 试计算它们的临界载荷,并进行比较。解:(a)(1) 比较压杆弯曲平面的柔度:长度系数: =2(2) 压杆是大柔度杆,用欧拉公式计算临界力;(b)(1) 长度系数和失稳平面的柔度:(2) 压杆仍是大柔度杆,用欧拉公式计算临界力;(c)(1) 长度系数和失稳平面的柔度: (2) 压杆是中柔度杆,选用经验公式计算临界力三种情况的临界压力的大小排序:15-3 图示两端球形铰支细长压杆,弹性模量E200Gpa,试用欧拉公式计算其临界载荷。(1) 圆形截面,d=25 mm,l=1.0 m;(2) 矩形截面,h2b40 mm,l1.0 m
17、;解:(1) 圆形截面杆:两端球铰: =1, (2) 矩形截面杆:两端球铰:=1, IyIz15-9 图示矩形截面压杆,有三种支持方式。杆长l300 mm,截面宽度b20 mm,高度h12 mm,弹性模量E70 GPa,p50,030,中柔度杆的临界应力公式为cr382 MPa (2.18 MPa)(b)0l(c)lFl(a)AAA-AhbzyFF 试计算它们的临界载荷,并进行比较。解:(a)(1) 比较压杆弯曲平面的柔度:长度系数: =2(2) 压杆是大柔度杆,用欧拉公式计算临界力;(b)(1) 长度系数和失稳平面的柔度:(2) 压杆仍是大柔度杆,用欧拉公式计算临界力;(c)(1) 长度系数
18、和失稳平面的柔度: (2) 压杆是中柔度杆,选用经验公式计算临界力三种情况的临界压力的大小排序:D(d)b3m(a)2b(c)da(b)0.7DFazyzy15-10 图示压杆,截面有四种形式。但其面积均为A3.210 mm2, 试计算它们的临界载荷,并进行比较。弹性模量E70 GPa。解:(a)(1) 比较压杆弯曲平面的柔度:矩形截面的高与宽:长度系数:=0.5(2) 压杆是大柔度杆,用欧拉公式计算临界力:(b)(1) 计算压杆的柔度:正方形的边长:长度系数:=0.5 (2) 压杆是大柔度杆,用欧拉公式计算临界力:(c)(1) 计算压杆的柔度:圆截面的直径:长度系数:=0.5(2) 压杆是大
19、柔度杆,用欧拉公式计算临界力:(d)(1)计算压杆的柔度:空心圆截面的内径和外径:长度系数:=0.5(2) 压杆是大柔度杆,用欧拉公式计算临界力;四种情况的临界压力的大小排序:15-11 细长木柱截面直径为15cm,长度l =7m,材料弹性模量E =10GPa,两木柱一个两端固定,一个一端固定一段铰接,试求两木柱的临界力、临界应力和柔度。解: 15-12 图示压杆,横截面为bh的矩形, 试从稳定性方面考虑,确定h/b的最佳值。当压杆在xz平面内失稳时,可取y0.7。 xyxzhlb解:(1) 在xz平面内弯曲时的柔度;(2) 在xy平面内弯曲时的柔度;(3) 考虑两个平面内弯曲的等稳定性;只供学习与交流