1、学习资料常用测量计算公式相对标准偏差:RSD=S/*100%其中S为标准偏差,x为测量平均值.相对标准偏差RSD就是变异系数:变异系数的计算公式为: cv = S/x(均值)100%标称误差=(最大的绝对误差)/量程 x 100% 绝对误差 = | 示值 - 标准值 | (即测量值与真实值之差的绝对值) 相对误差 = | 示值 - 标准值 |/真实值 (即绝对误差所占真实值的百分比)(实际相对误差,一般用百分数给出,绝对误差,L真值) 另外还有: 系统误差:就是由量具,工具,夹具等所引起的误差。 偶然误差:就是由操作者的操作所引起的(或外界因素所引起的)偶然发生的误差。准确度:测定值与真实值符
2、合的程度 绝对误差:测量值(或多次测定的平均值)与真(实)值之差称为绝对误差,用表示。 相对误差:绝对误差与真值的比值称为相对误差。常用百分数表示。 绝对误差可正可负,可以表明测量仪器的准确度,但不能反映误差在测量值中所占比例,相对误差反映测量误差在测量结果中所占的比例,衡量相对误差更有意义。 例:用刻度0.5cm的尺测量长度,可以读准到0.1cm,该尺测量的绝对误差为0.1cm;用刻度1mm的尺测量长度,可以读准到0.1mm,该尺测量的绝对误差为0.1mm。 例:分析天平称量误差为0.1mg, 减重法需称2次,可能的最大误差为0.2mg, 为使称量相对误差小于0.1%,至少应称量多少样品?答
3、:称量样品量应不小于0.2g。 真值():真值是客观存在的,但任何测量都存在误差,故真值只能逼近而不可测知,实际工作中,往往用“标准值”代替“真值”。标准值:采用多种可靠的分析方法、由具有丰富经验的分析人员经过反复多次测定得出的结果平均值。 精密度:几次平行测定结果相互接近的程度。 各次测定结果越接近,精密度越高,用偏差衡量精密度。偏差:单次测量值与样本平均值之差:平均偏差:各次测量偏差绝对值的平均值。 相对平均偏差:平均偏差与平均值的比值。 标准偏差:各次测量偏差的平方和平均值再开方,比平均偏差更灵敏的反映较大偏差的存在,在统计学上更有意义。 相对标准偏差(变异系数) 例:分析铁矿石中铁的质量分数,得到如下数据:37.45,37.20,37.50,37.30,37.25(%),计算测结果的平均值、平均偏差、相对平均偏差、标准偏差、变异系数。准确度与精密度的关系: 1)精密度是保证准确度的先决条件:精密度不符合要求,表示所测结果不可靠,失去衡量准确度的前提。 2)精密度高不能保证准确度高。 换言之,准确的实验一定是精密的,精密的实验不一定是准确的。 重复性试验 按拟定的含量测定方法,对同一批样品进行多次测定(平行试验至少5次以上,即n5),计算相对标准偏差(RSD),一般要求低于5%仅供学习与参考