收藏 分销(赏)

九年级数学圆的测试题及答案(全).doc

上传人:w****g 文档编号:4037125 上传时间:2024-07-26 格式:DOC 页数:4 大小:29.54KB
下载 相关 举报
九年级数学圆的测试题及答案(全).doc_第1页
第1页 / 共4页
九年级数学圆的测试题及答案(全).doc_第2页
第2页 / 共4页
点击查看更多>>
资源描述
圆的有关概念与性质 圆的有关概念与性质 1.圆上各点到圆心的距离都等于 半径 。 2.圆是 轴 对称图形,任何一条直径所在的直线都是它的 对称轴 ;圆又是 中心 对称图形, 圆心 是它的对称中心。 3。垂直于弦的直径平分 这条弦 ,并且平分 弦所对的弧 ;平分弦(不是直径)的 直径 垂直于弦,并且平分 弦所对的弧 . 4。在同圆或等圆中,如果两个圆心角,两条弧,两条弦,两条弦心距,两个圆周角中有一组量 相等 ,那么它们所对应的其余各组量都分别 相等 . 5。同弧或等弧所对的圆周角 相等 ,都等于它所对的圆心角的 一半 。 6.直径所对的圆周角是 90° ,90°所对的弦是 直径 。 7.三角形的三个顶点确定 1 个圆,这个圆叫做三角形的外接圆,三角形的外接圆的圆心叫 外 心,是三角形 三边垂直平分线 的交点。 8.与三角形各边都相切的圆叫做三角形的 内切圆 ,内切圆的圆心是三角形 三条角平分线的交点 的交点,叫做三角形的 内心 。 9.圆内接四边形:顶点都在圆上的四边形,叫圆内接四边形. 10。圆内接四边形对角互补,它的一个外角等于它相邻内角的对角 与圆有关的位置关系 1。点与圆的位置关系共有三种:① 点在圆外 ,② 点在圆上 ,③ 点在圆内 ;对应的点到圆心的距离d和半径r之间的数量关系分别为: ①d > r,②d = r,③d 〈 r。 2。直线与圆的位置关系共有三种:① 相交 ,② 相切 ,③ 相离 ; 对应的圆心到直线的距离d和圆的半径r之间的数量关系分别为: ①d 〈 r,②d = r,③d > r。 3。圆与圆的位置关系共有五种: ① 内含 ,② 相内切 ,③ 相交 ,④ 相外切 ,⑤ 外离 ; 两圆的圆心距d和两圆的半径R、r(R≥r)之间的数量关系分别为: ①d 〈 R-r,②d = R—r,③ R—r < d < R+ r,④d = R+r,⑤d > R+r. 4。圆的切线 垂直于 过切点的半径;经过 直径 的一端,并且 垂直于 这条 直径 的直线是圆的切线. 5。从圆外一点可以向圆引 2 条切线, 切线长 相等,这点与圆心之间的连线 平分 这两条切线的夹角。 与圆有关的计算 1. 圆的周长为 2πr ,1°的圆心角所对的弧长为 ,n°的圆心角所对的弧长 为 ,弧长公式为n为圆心角的度数上为圆半径) 。 2。 圆的面积为 πr2 ,1°的圆心角所在的扇形面积为 ,n°的圆心角所在的扇形面积为S= = (n为圆心角的度数,R为圆的半径). 3。圆柱的侧面积公式:S= 2 (其中为 底面圆 的半径 ,为 圆柱 的高。) 4. 圆锥的侧面积公式:S=(其中为 底面 的半径 ,为 母线 的长。) 圆锥的侧面积与底面积之和称为圆锥的全面积 测试题 一、选择题(每小题3分,共45分) 1.在△ABC中,∠C=90°,AB=3cm,BC=2cm,以点A为圆心,以2。5cm为半径作圆,则点C和⊙A的位置关系是( )。 A.C在⊙A 上 B.C在⊙A 外 C.C在⊙A 内 D.C在⊙A 位置不能确定。 2.一个点到圆的最大距离为11cm,最小距离为5cm,则圆的半径为( ). A.16cm或6cm B.3cm或8cm   C.3cm    D.8cm 3.AB是⊙O的弦,∠AOB=80°则弦AB所对的圆周角是( )。   A.40° B.140°或40°  C.20°   D.20°或160° 4.O是△ABC的内心,∠BOC为130°,则∠A的度数为( ). A.130° B.60° C.70° D.80° 5.如图1,⊙O是△ABC的内切圆,切点分别是D、E、F,已知∠A = 100°,∠C = 30°,则∠DFE的度数是( ). A.55° B.60° C.65° D.70° 6.如图2,边长为12米的正方形池塘的周围是草地,池塘边A、B、C、D 处各有一棵树,且AB=BC=CD=3米.现用长4米的绳子将一头羊拴在其 中的一棵树上.为了使羊在草地上活动区域的面积最大,应将绳子拴在( )。 A. A处 B. B处 C.C处 D.D 处 图1 图2 7.已知两圆的半径分别是2和4,圆心距是3,那么这两圆的位置是( )。   A.内含 B.内切 C.相交 D. 外切 8.已知半径为R和r的两个圆相外切.则它的外公切线长为( )。 A.R+r B. C. D.2 9.已知圆锥的底面半径为3,高为4,则圆锥的侧面积为( ). A.10π B.12π C.15π D.20π 10.如果在一个顶点周围用两个正方形和n个正三角形恰好可以进行平面镶嵌,则n的值是( )。 A.3 B.4 C.5 D.6 11.下列语句中不正确的有( )。 ①相等的圆心角所对的弧相等 ②平分弦的直径垂直于弦 ③圆是轴对称图形,任何一条直径都是它的对称轴 ④长度相等的两条弧是等弧 A.3个 B.2个 C.1个 D.4个 12.先作半径为的第一个圆的外切正六边形,接着作上述外切正六边形的外接圆,再作上述外接圆的外切正六边形,…,则按以上规律作出的第8个外切正六边形的边长为( ). A. B. C. D. 13.如图3,⊿ABC中,∠C=90°,BC=4,AC=3,⊙O内切于⊿ABC ,则阴影部分面积为( ) A.12-π B.12-2π C.14—4π D.6—π 14.如图4,在△ABC 中,BC =4,以点A为圆心、2为半径的⊙A与BC相切于点D,交AB于E,交 AC于F,点P是⊙A上的一点,且∠EPF=40°,则图中阴影部分的面积是( )。 A.4-π B.4-π C.8-π D.8-π 15.如图5,圆内接四边形ABCD的BA、CD的延长线交于P,AC、BD交于E,则图中相似三角形有( )。 A.2对 B.3对 C.4对 D.5对 图3 图4 图5 二、填空题(每小题3分,共30分) 1.两圆相切,圆心距为9 cm,已知其中一圆半径为5 cm,另一圆半径为_____。 2.两个同心圆,小圆的切线被大圆截得的部分为6,则两圆围成的环形面积为_________. 3.边长为6的正三角形的外接圆和内切圆的周长分别为_________。 4.同圆的外切正六边形与内接正六边形的面积之比为_________. 5.矩形ABCD中,对角线AC=4,∠ACB=30°,以直线AB为轴旋转一周得到圆柱的表面积是_________. 6.扇形的圆心角度数60°,面积6π,则扇形的周长为_________。 7.圆的半径为4cm,弓形弧的度数为60°,则弓形的面积为_________。 8.在半径为5cm的圆内有两条平行弦,一条弦长为6cm,另一条弦长为8cm,则两条平行弦之间的距离为_________。 9.如图6,△ABC内接于⊙O,AB=AC,∠BOC=100°,MN是过B点而垂直于OB的直线,则∠ABM=________,∠CBN=________; 10.如图7,在矩形ABCD中,已知AB=8 cm,将矩形绕点A旋转90°,到达A′B′C′D′的位置,则在转过程 中,边CD扫过的(阴影部分)面积S=_________. 图6 图7 三、解答下列各题(第9题11分,其余每小题8分,共75分) 1.如图,P是⊙O外一点,PAB、PCD分别与⊙O相交于A、B、C、D。 (1)PO平分∠BPD; (2)AB=CD;(3)OE⊥CD,OF⊥AB;(4)OE=OF. 从中选出两个作为条件,另两个作为结论组成一个真命题,并加以证明。 2.如图,⊙O1的圆心在⊙O的圆周上,⊙O和⊙O1交于A,B,AC切⊙O于A,连结CB,BD是⊙O的直径,∠D=40°求:∠A O1B、∠ACB和∠CAD的度数。 3.已知:如图20,在△ABC中,∠BAC=120°,AB=AC,BC=4,以A为圆心,2为半径作⊙A,试问:直线BC与⊙A的关系如何?并证明你的结论。 4.如图,ABCD是⊙O的内接四边形,DP∥AC,交BA的延长线于P,求证:AD·DC=PA·BC。 5.如图⊿ABC中∠A=90°,以AB为直径的⊙O交BC于D,E为AC边中点,求证:DE是⊙O的切线. 6.如图,已知扇形OACB中,∠AOB=120°,弧AB长为L=4π,⊙O′和弧AB、OA、OB分别相切于点C、D、E,求⊙O的周长. 7.如图,半径为2的正三角形ABC的中心为O,过O与两个顶点画弧,求这三条弧所围成的阴影部分的面积。 8.如图,ΔABC的∠C=Rt∠,BC=4,AC=3,两个外切的等圆⊙O1,⊙O2各与AB,AC,BC相切于F,H,E,G,求两圆的半径。 9.如图①、②、③中,点E、D分别是正△ABC、正四边形ABCM、正五 边形ABCMN中以C点为顶点的相邻两边上的点,且BE = CD,DB交AE于P点. ⑴求图①中,∠APD的度数; ⑵图②中,∠APD的度数为___________,图③中,∠APD的度数为___________; ⑶根据前面探索,你能否将本题推广到一般的正n 边形情况.若能,写出推广问题和结论;若不能,请说明理由. 参考答案 一、1、C  2、B  3、B  4、D  5、C  6、B 7、C 8、D 9、C 10、A 11、D 12、A 13、D 14、B 15、C 二、1、4 cm或 14cm; 2、9π; 3、π,π; 4、4:3; 5、π;6、12+2π;7、(π—)cm2;8、7cm或1cm; 9、65°,50°;10、16πcm2。 三、 1、命题1,条件③④结论①②, 命题2,条件②③结论①④。 证明:命题1∵OE⊥CD , OF⊥AB, OE=OF, ∴AB=CD, PO平分∠BPD。 2、∠A O1B=140°,∠ACB=70°,∠CAD=130°。 3、作AD⊥BC垂足为D, ∵AB=AC,∠BAC=120°, ∴∠B=∠C=30°。 ∵BC=4, ∴BD=BC=2。 可得AD=2。又∵⊙A半径为2, ∴⊙A与BC相切。 4、连接BD,证△PAD∽△DCB.5、连接OD、OE,证△OEA≌△OED。6、12π。 7、4π-。 【解析】解:三条弧围成的阴影部份构成"三叶玫瑰",其总面积等于6个弓形的面 积之和。每个弓形的半径等于△ABC外接园的半径R=(2/sin60°)/2 =2√3/3。每个弓形对应的园心角θ=π/3.每个弓形的弦长b=R=2√3/3。 ∴一个弓形的面积S=(1/2)R^2(θ-sinθ) =(1/2)(2√3/3)^2[π/3—sin(π/3)] =(2/3)(π/3-√3/2) 于是三叶玫瑰的总面积=6S=4(π/3-√3/2)=2(2π—3√3)/3。 8、。提示:将两圆圆心与已知的点连接,用面积列方程求. 9、(1)∵△ABC是等边三角形 ∴AB=BC,∠ABE=∠BCD=60° ∵BE=CD ∴△ABE≌△BCD ∴∠BAE=∠CBD ∴∠APD=∠ABP+∠BAE=∠ABP+∠CBD=∠ABE=60° (2)90°,108° (3)能.如图,点E、D分别是正n边形ABCM …中以C点为顶点的相邻两边上的点,且BE=CD,BD与AE交于点P,则∠APD的度数为 。
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传
相似文档                                   自信AI助手自信AI助手

当前位置:首页 > 教育专区 > 初中数学

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4009-655-100  投诉/维权电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服