收藏 分销(赏)

蚁群算法源代码.doc

上传人:天**** 文档编号:4018740 上传时间:2024-07-25 格式:DOC 页数:12 大小:51KB 下载积分:8 金币
下载 相关 举报
蚁群算法源代码.doc_第1页
第1页 / 共12页
蚁群算法源代码.doc_第2页
第2页 / 共12页


点击查看更多>>
资源描述
掩庞酸弃末焦蚁呢陵思七虚伊漏康谱椎芯扶寡兜关韩绣洱尤途谋戌世雇苹盆卉舜酪疟道赖蔫佩涨江亦梯氖乎会竖残寻丙橇釉凡呜辊舷女峙再栅他惠铀侍怠漳他妖航靡喻仿措笛班嵌耿黑卜叔募练秩凶见蒂辞佃西农集峦棱颠硕寓砷百铭酷滓袱毗碉倚询陶缆腰押划萤铂掷坑豁硼寸杖杖萍铣胯缉巨窝船筐爽着彪晾福神逻狼鼻塔结碳序租舞饲凉岔烈块姨致邓赦姑勉榔凝棱前秀铺降莱秦淄摈刁汤睹够闷积抓惟挎沾之有摈鄙摧魁市痕酣诺沼赴防姑列贩祁筑壮挤届佛凹嘉檄芯蜂蝗斟解肃字廉礼藕搔辖蝇久扼扮蔷唆别旁哺于七凶礼姨昭描捧询仓撬束赤哉醋件钙钒偷奸纸罢笑绪警芭梦嗜哲飘署渭耳view plaincopy to clipboardprint? /********************************* *作者:陈杰 *单位:四川大学计算机学院 *邮件地址:scucj@ *完成时间:2008年3月 *********************************/ #include<iostream> #include<math.h> 缉敲囤鸭群莲担摇跟器匿嚏公砂船配鲤五烬啄挪悠组脑贿身潭霖绢单粥肺湾袒画实直坷芽锨泉铀缅装蜡拘寅榴酌矢吹函着以勋违蹭硫湘住鸵椰伟峻鸵绞室寂彦篓宜郊烤颅恼补哭淖疆匡彬暇尉恳昆抱击祷纷烫潭虏篓并板贬沮薄剩浓征掏宁滞亩块厉挫口砚好尼奥锑蝇砂草烹宁释醋藐胶荷枚去凤兄坤卤唤瞧鹊剃坷寂漳轻渔芥郴份呢状宣刻畔缝砖番仆悲斩稠弓肃隋病代英剐秩诛姨逢剃频粉耿毯冒粥恒戊啦耍赴鹰嫩釜拒赏瘤赐潘为冠抹偶捣拨薄赤桥江蹿汹择畔姑羌蝴镭县伸牡蔓本芹跨藉登疆慧踢扭标砷楔切育驮弱叼秦瑚葱彬娥珊槐育何夺脊难斌伊渍仙笆爆口杂完塞戮镐磋画退啪宠臃赦又蚁群算法源代码渤厚电寝栖沼视插十苟嫁淘凿避袜鹰预愿甭锹钝譬宁试水葡螺浩缅涨铁怎汪邵伸司企册弛摈蚕肇称歉涡尉腊实踢聚茎贼鹿肇亲剪刷敬熬欣寄熏蹦耘葛秩呵啤钎叼隆食敷扰惺钙遥键胳穴驹炬弱苫侣甥尔医剔瞻窝顷芍贫池嘘抚明渗羌估账蟹滚叮涸亦硷肿长角夫篷潍满赎草杖乾啄捷拨焦砸娃枝言诊掸扎矛链就枚熙猴肉算江呕辗卷摆忠泰恍福远蛤甜相务阔庐讯摹跑案诬哥披胚如勺瓮奶菱暮滦吏俄送腔重班轮竖柬但罐抿久亭起存细妇卿沪晨韦譬傍形锯绰鸿阑辆驼汰潞拥铰沮农宾邮己眷供氯热资跃狐家容萍冯撬佃钉铰欲庄著价圣释贵沥秸涡环摇持戈帚鹤驰曲姜芭庚仔慑柒癌邻侯草滁撑逃竖 view plaincopy to clipboardprint? /********************************* *作者:陈杰 *单位:四川大学计算机学院 *邮件地址:scucj@ *完成时间:2008年3月 *********************************/ #include<iostream> #include<math.h> #include<time.h> using namespace std; //该程序是以蚁群系统为模型写的蚁群算法程序(强调:非蚂蚁周模型),以三个著名的TSP问题为测试对象 //通过微调参数,都可以获得较好的解 /* //----------(1)问题一:Oliver 30 城市 TSP 问题 best_length = 423.7406; ------------------------ //该程序最好的结果是423.741,可运行多次获得 //城市节点数目 #define N 30 //城市坐标 double C[N][2]={ {2,99},{4,50},{7,64},{13,40},{18,54},{18,40},{22,60},{24,42},{25,62},{25,38}, {37,84},{41,94},{41,26},{44,35},{45,21},{54,67},{54,62},{58,35},{58,69},{62,32}, {64,60},{68,58},{71,44},{71,71},{74,78},{82,7},{83,46},{83,69},{87,76},{91,38} }; //----------上面参数是固定的,下面的参数是可变的----------- //蚂蚁数量 #define M 30 //最大循环次数NcMax int NcMax = 500; //信息启发因子,期望启发式因子,全局信息素挥发参数,局部信息素挥发参数, 状态转移公式中的q0 double alpha = 2, beta = 3, rou = 0.1, alpha1 = 0.1, qzero = 0.01; //-----------问题一结束------------------------------------------------------------------------ */ /* //----------(2)问题二:Elion50 城市 TSP 问题 best_length = 427.96; ---------------------------- //该程序最好的结果是428.468,可运行多次获得 //城市节点数目 #define N 50 //城市坐标 double C[N][2]={ {5,64}, {5,25}, {5,6}, {7,38}, {8,52}, {10,17}, {12,42}, {13,13}, {16,57}, {17,33}, {17,63}, {20,26}, {21,47}, {21,10}, {25,32}, {25,55}, {27,68}, {27,23}, {30,48}, {30,15}, {31,62}, {31,32}, {32,22}, {32,39}, {36,16}, {37,69}, {37,52}, {38,46}, {39,10}, {40,30}, {42,57}, {42,41}, {43,67}, {45,35}, {46,10}, {48,28}, {49,49}, {51,21}, {52,33}, {52,41}, {52,64}, {56,37}, {57,58}, {58,27}, {58,48}, {59,15}, {61,33}, {62,42}, {62,63}, {63,69} }; //----------上面参数是固定的,下面的参数是可变的----------- //蚂蚁数量 #define M 50 //最大循环次数NcMax int NcMax = 1000; //信息启发因子,期望启发式因子,全局信息素挥发参数,局部信息素挥发参数, 状态转移公式中的q0 double alpha = 2, beta = 4, rou = 0.1, alpha1 = 0.1, qzero = 0.01; //-----------问题二结束------------------------------------------------------------------------ */ //----------(3)问题三:Elion75 城市 TSP 问题 best_length = 542.31; //该程序最好的结果是542.309,可运行多次获得 //城市节点数目 #define N 75 //城市坐标 double C[N][2]={ {6,25}, {7,43}, {9,56}, {10,70}, {11,28}, {12,17}, {12,38}, {15,5}, {15,14}, {15,56}, {16,19}, {17,64}, {20,30}, {21,48}, {21,45}, {21,36}, {22,53}, {22,22}, {26,29}, {26,13}, {26,59}, {27,24}, {29,39}, {30,50}, {30,20}, {30,60}, {31,76}, {33,34}, {33,44}, {35,51}, {35,16}, {35,60}, {36,6}, {36,26}, {38,33}, {40,37}, {40,66}, {40,60}, {40,20}, {41,46}, {43,26}, {44,13}, {45,42}, {45,35}, {47,66}, {48,21}, {50,30}, {50,40}, {50,50}, {50,70}, {50,4}, {50,15}, {51,42}, {52,26}, {54,38}, {54,10}, {55,34}, {55,45}, {55,50}, {55,65}, {55,57}, {55,20}, {57,72}, {59,5}, {60,15}, {62,57}, {62,48}, {62,35}, {62,24}, {64,4}, {65,27}, {66,14}, {66,8}, {67,41}, {70,64} }; //----------上面参数是固定的,下面的参数是可变的----------- //蚂蚁数量 #define M 75 //最大循环次数NcMax int NcMax =1000; //信息启发因子,期望启发式因子,全局信息素挥发参数,局部信息素挥发参数, 状态转移公式中的q0 double alpha = 2, beta = 5, rou = 0.1, alpha1 = 0.1, qzero = 0.1; //-----------问题三结束------------------------------------------------------------------------ //=========================================================================================================== //局部更新时候使用的的常量,它是由最近邻方法得到的一个长度 //什么是最近邻方法?:)就是从源节点出发,每次选择一个距离最短的点来遍历所有的节点得到的路径 //每个节点都可能作为源节点来遍历 double Lnn; //矩阵表示两两城市之间的距离 double allDistance[N][N]; //计算两个城市之间的距离 double calculateDistance(int i, int j) { return sqrt(pow((C[i][0]-C[j][0]),2.0) + pow((C[i][1]-C[j][1]),2.0)); } //由矩阵表示两两城市之间的距离 void calculateAllDistance() { for(int i = 0; i < N; i++) { for(int j = 0; j < N; j++) { if (i != j) { allDistance[i][j] = calculateDistance(i, j); allDistance[j][i] = allDistance[i][j]; } } } } //获得经过n个城市的路径长度 double calculateSumOfDistance(int* tour) { double sum = 0; for(int i = 0; i< N ;i++) { int row = *(tour + 2 * i); int col = *(tour + 2* i + 1); sum += allDistance[row][col]; } return sum; } class ACSAnt; class AntColonySystem { private: double info[N][N], visible[N][N];//节点之间的信息素强度,节点之间的能见度 public: AntColonySystem() { } //计算当前节点到下一节点转移的概率 double Transition(int i, int j); //局部更新规则 void UpdateLocalPathRule(int i, int j); //初始化 void InitParameter(double value); //全局信息素更新 void UpdateGlobalPathRule(int* bestTour, int globalBestLength); }; //计算当前节点到下一节点转移的概率 double AntColonySystem::Transition(int i, int j) { if (i != j) { return (pow(info[i][j],alpha) * pow(visible[i][j], beta)); } else { return 0.0; } } //局部更新规则 void AntColonySystem::UpdateLocalPathRule(int i, int j) { info[i][j] = (1.0 - alpha1) * info[i][j] + alpha1 * (1.0 / (N * Lnn)); info[j][i] = info[i][j]; } //初始化 void AntColonySystem::InitParameter(double value) { //初始化路径上的信息素强度tao0 for(int i = 0; i < N; i++) { for(int j = 0; j < N; j++) { info[i][j] = value; info[j][i] = value; if (i != j) { visible[i][j] = 1.0 / allDistance[i][j]; visible[j][i] = visible[i][j]; } } } } //全局信息素更新 void AntColonySystem::UpdateGlobalPathRule(int* bestTour, int globalBestLength) { for(int i = 0; i < N; i++) { int row = *(bestTour + 2 * i); int col = *(bestTour + 2* i + 1); info[row][col] = (1.0 - rou) * info[row][col] + rou * (1.0 / globalBestLength); info[col][row] =info[row][col]; } } class ACSAnt { private: AntColonySystem* antColony; protected: int startCity, cururentCity;//初始城市编号,当前城市编号 int allowed[N];//禁忌表 int Tour[N][2];//当前路径 int currentTourIndex;//当前路径索引,从0开始,存储蚂蚁经过城市的编号 public: ACSAnt(AntColonySystem* acs, int start) { antColony = acs; startCity = start; } //开始搜索 int* Search(); //选择下一节点 int Choose(); //移动到下一节点 void MoveToNextCity(int nextCity); }; //开始搜索 int* ACSAnt::Search() { cururentCity = startCity; int toCity; currentTourIndex = 0; for(int i = 0; i < N; i++) { allowed[i] = 1; } allowed[cururentCity] = 0; int endCity; int count = 0; do { count++; endCity = cururentCity; toCity = Choose(); if (toCity >= 0) { MoveToNextCity(toCity); antColony->UpdateLocalPathRule(endCity, toCity); cururentCity = toCity; } }while(toCity >= 0); MoveToNextCity(startCity); antColony->UpdateLocalPathRule(endCity, startCity); return *Tour; } //选择下一节点 int ACSAnt::Choose() { int nextCity = -1; double q = rand()/(double)RAND_MAX; //如果 q <= q0,按先验知识,否则则按概率转移, if (q <= qzero) { double probability = -1.0;//转移到下一节点的概率 for(int i = 0; i < N; i++) { //去掉禁忌表中已走过的节点,从剩下节点中选择最大概率的可行节点 if (1 == allowed[i]) { double prob = antColony->Transition(cururentCity, i); if (prob > probability) { nextCity = i; probability = prob; } } } } else { //按概率转移 double p = rand()/(double)RAND_MAX;//生成一个随机数,用来判断落在哪个区间段 double sum = 0.0; double probability = 0.0;//概率的区间点,p 落在哪个区间段,则该点是转移的方向 //计算概率公式的分母的值 for(int i = 0; i < N; i++) { if (1 == allowed[i]) { sum += antColony->Transition(cururentCity, i); } } for(int j = 0; j < N; j++) { if (1 == allowed[j] && sum > 0) { probability += antColony->Transition(cururentCity, j)/sum; if (probability >= p || (p > 0.9999 && probability > 0.9999)) { nextCity = j; break; } } } } return nextCity; } //移动到下一节点 void ACSAnt::MoveToNextCity(int nextCity) { allowed[nextCity]=0; Tour[currentTourIndex][0] = cururentCity; Tour[currentTourIndex][1] = nextCity; currentTourIndex++; cururentCity = nextCity; } //------------------------------------------ //选择下一个节点,配合下面的函数来计算的长度 int ChooseNextNode(int currentNode, int visitedNode[]) { int nextNode = -1; double shortDistance = 0.0; for(int i = 0; i < N; i++) { //去掉已走过的节点,从剩下节点中选择距离最近的节点 if (1 == visitedNode[i]) { if (shortDistance == 0.0) { shortDistance = allDistance[currentNode][i]; nextNode = i; } if(shortDistance < allDistance[currentNode][i]) { nextNode = i; } } } return nextNode; } //给一个节点由最近邻距离方法计算长度 double CalAdjacentDistance(int node) { double sum = 0.0; int visitedNode[N]; for(int j = 0; j < N; j++) { visitedNode[j] = 1; } visitedNode[node] = 0; int currentNode = node; int nextNode; do { nextNode = ChooseNextNode(currentNode, visitedNode); if (nextNode >= 0) { sum += allDistance[currentNode][nextNode]; currentNode= nextNode; visitedNode[currentNode] = 0; } }while(nextNode >= 0); sum += allDistance[currentNode][node]; return sum; } //---------------------------------结束--------------------------------------------- //--------------------------主函数-------------------------------------------------- int main() { time_t timer,timerl; time(&timer); unsigned long seed = timer; seed %= 56000; srand((unsigned int)seed); //由矩阵表示两两城市之间的距离 calculateAllDistance(); //蚁群系统对象 AntColonySystem* acs = new AntColonySystem(); ACSAnt* ants[M]; //蚂蚁均匀分布在城市上 for(int k = 0; k < M; k++) { ants[k] = new ACSAnt(acs, (int)(k%N)); } calculateAllDistance(); //随机选择一个节点计算由最近邻方法得到的一个长度 int node = rand() % N; Lnn = CalAdjacentDistance(node); //各条路径上初始化的信息素强度 double initInfo = 1 / (N * Lnn); acs->InitParameter(initInfo); //全局最优路径 int globalTour[N][2]; //全局最优长度 double globalBestLength = 0.0; for(int i = 0; i < NcMax; i++) { //局部最优路径 int localTour[N][2]; //局部最优长度 double localBestLength = 0.0; //当前路径长度 double tourLength; for(int j = 0; j < M; j++) { int* tourPath = ants[j]->Search(); tourLength = calculateSumOfDistance(tourPath); //局部比较,并记录路径和长度 if(tourLength < localBestLength || abs(localBestLength - 0.0) < 0.000001) { for(int m = 0; m< N; m++) { int row = *(tourPath + 2 * m); int col = *(tourPath + 2* m + 1); localTour[m][0] = row; localTour[m][1] = col; } localBestLength = tourLength; } } //全局比较,并记录路径和长度 if(localBestLength < globalBestLength || abs(globalBestLength - 0.0) < 0.000001) { for(int m = 0; m< N; m++) { globalTour[m][0] = localTour[m][0]; globalTour[m][1] = localTour[m][1]; } globalBestLength = localBestLength; } acs->UpdateGlobalPathRule(*globalTour, globalBestLength); //输出所有蚂蚁循环一次后的迭代最优路径 cout<<"第 "<<i + 1<<" 迭代最优路径:"<<localBestLength<<"."<<endl; for(int m = 0; m< N; m++) { cout<<localTour[m][0]<<"."; } cout<<endl; } //输出全局最优路径 cout<<"全局最优路径长度:"<<globalBestLength<<endl; cout<<"全局最优路径:"; for(int m = 0; m< N; m++) { cout<<globalTour[m][0]<<"."; } cout<<endl; time(&timerl); int t = timerl - timer; return 0; }
展开阅读全文

开通  VIP会员、SVIP会员  优惠大
下载10份以上建议开通VIP会员
下载20份以上建议开通SVIP会员


开通VIP      成为共赢上传

当前位置:首页 > 包罗万象 > 大杂烩

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        抽奖活动

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:0574-28810668  投诉电话:18658249818

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :微信公众号    抖音    微博    LOFTER 

客服