1、二手房估价模型调研一、 研究背景随着经济的发展,我国与房地产相关的经济活动越来越频繁,二手房的交易也尤为活跃。无论是从市场参与者的角度,还是从国家开征税费的角度,二手房价格的衡量始终是一个热门话题,二手房评估工作受到更加普遍的重视。房屋的价格影响因素诸多,这些因素对最终价格影响的优先级也不一样。目前经常使用的三大传统评估方法市场比较法、成本法、和收益法在实际使用中对操作人员的素质要求较高,缺乏对数理模型的使用,成本较高。近年来特征价格理论被广泛使用,该理论从消费者对住宅特征的需求角度全面理解房价,进行房价评估研究。在利用特征价格理论构建二手房估价模型过程中,一般使用多元线性回归方法进行回归预测
2、,函数形式的选择对评估的效果影响较大。而这种选择却常常依赖于人为的线性假定,容易造成较大误差。国外学者开始将机器学习的方法广泛应用于房地产评估领域。在该领域出现的特征变量众多,特征变量与价格也非传统的线性关系,采用机器学习的方法能更好的挖掘特征变量与价格的关系,获得更好的评估效果,这是以后国内发展的行业趋势。二、 相关理论基础1. 传统的三大评估方法市场比较法适用于已经有类似房屋成交记录的情况。顾名思义市场法就是通过与欲评估房屋在地段、房龄、户型等方面相类似市场实例与所评估二手房进行比照,然后依据实例价格再根据所评估房屋的具体情况做出适当修正,以此估算所评估二手房的客观合理价格或价值。把三套房
3、子的成交价格作为比较对象,加入几方面的修正系数最终得出的算术平均值,就是委托估价房屋的评估价。这种方法也基本接近于基于特征价格理论的模型。成本法是以假设重新复制被估房地产所需的成本为依据而评估房地产价值的一种方法,即以一处与被估房地产可以产生同等效用的房地产,所需投入的各项费用之和为依据,再加上一定的利润和应纳税金来确定被估房地产的价值。收益法则通过预测房产以后每年的纯收益,将未来现金流折现求和,以求取该房产的合理价格。主要适用于估算用于投资或经营的房地产。成本法、市场比较法、收益法分别从生产费用价值理论、经济学中的替代原理、房地产价格形成的预期原理来进行评估。三种方法之间存在较大差异,一般情
4、况下,收益法得出的估价最高,市场比较法得出的价格其次,成本法估价最低。2. 特征价格理论通俗地说该理论认为房产的价格是由其本身的一些特征组成的,房地产价格可以通过确定房产特征的价格和数量来简洁获得。国外经典的三特特征变量包括区位特征、建筑特征和邻里环境。该理论可用公式表示为:P = f ( L , S ,N )3. 新型评估技术与方法国外已经发展和应用了多种新技术和方法,在理论和实践中得到了不少应用,如神经网络、支持向量机、随机森林等。4. 多元线性回归在回归分析中,如果有两个或两个以上的自变量,就称为多元回归。事实上,一种现象常常是与多个因素相联系的,由多个自变量的最优组合共同来预测或估计因
5、变量,比只用一个自变量进行预测或估计更有效,更符合实际。三、 特征价格理论在实际应用中一般使用传统的回归模型中使用最广泛的多元线性回归模型来构建模型,其函数形式如下:P=a0+aiZi+其中P是二手房的挂盘单价, Zi是二手房的特征向量,是其他因素。这里需要使用统计软件利用经济学和统计学知识进而获得各自的系数。在生活中可以直接运用大致的比重,测算出一个比较近似的参考价格来买卖房屋,这样就会使二手房市场更加的规范化。特殊地,将所有变量包括因变量都先转化为标准分,再进行线性回归,此时得到的回归系数就能反映对应自变量的重要程度。这时的回归方程称为标准回归方程,回归系数称为标准回归系数,表示如下。这时
6、候标识评估完全是基于特征变量进行评估,此时的计算更为复杂,要通过使用专业的软件(如SPSS、Matlab等)进行大量数据的计算。P=X1Y1+X2Y2+XNYN从理论上看,对二手房价格评估主要有两方面,一是基于二手房成交均价,这部分数据是根据市场动态一直变化的,二是基于楼盘的属性特征估价,包括区位交通、配套设施、周边环境、管理水平等,表现为消费者效用的满足程度。三大特征变量如下表所示:特征分类变量名变量含义区位特征到CBD驱车时间从住宅到市中心开车的最短时间公交线路地铁站建筑特征建筑面积卧室数所在楼层总楼层朝向容积率小区的地上总建筑面积与用地面积的比率,越小越好。装修建筑年龄邻里环境小区户数绿
7、化卫生客气小区周边自然环境物业管理费运动设施生活配套临近大学停车位除了这些因素还要考虑市场因素、买方的心理因素。市场因素主要包括经济状况、房地产市场行情及市场供求状况等。买房因素主要是因为人们不愿意住旧房子,如果新、旧房差价不大,又没有别的诱人因素,人们是不会愿意购买旧房的。在网上调查各大房产网站,搜集资料,获得如下表所示的二手房估价标准,该标准获得业内普遍承认。分类评估标准备准看房龄折旧每年2%在对二手房进行销售时,一定要计算房屋的折旧费,砖混结构房屋折旧期限为50年,每年的折旧率为2左右。看户型“三小”套型(小厅、小卫、小厨)-10%,经典2房+8%正规的套二、套三等为主,这样的户型直接使
8、房价走高,反之形状不规范的异型户型,或套型过小、过大的户型等,都会让房价降低,一般减去510%。看楼层顶楼5%、次顶层和次底层3%、中间层+3%以处于中间部位的房屋最好卖,一般会增加3%,楼层越高或越低楼层的房屋售价就会相应减少15%左右。如果底楼带有户外花园,或顶楼带有屋顶花园,价格可能更高些。看朝向无朝南的门窗-5%,全明,南北通透+5%南北朝向的房子最受喜欢,东西朝向及其他朝向,由于室内的通风、采光性能不是很好等原因,朝向不好的房屋需减去25%。看装修5年内的装修+10%。装修时间在5年以内的房屋,如果装修质量较高、成色又好,则需增加10%;如果装修时间超过5年或只是简单装修,当初成本耗
9、费不大,增加比例酌情降低。装修折旧和心理因素视情况而定,一般超过5年不计价看物管无物业管理-5%,优秀物业管理+5%有物业管理的小区主要体现在新修商品房楼盘中。一般情况下没有物业管理的小区则要减去35%。看位置临街15%房屋临街会降低房屋的售出价格,而所处位置较好居住环境幽静的房屋,其价格就会偏高,且增幅在15%左右。看配套不完善515%,配套较好+510%消费者在选购二手房时,都会重点考虑到房屋周边的交通情况、医疗、教育、购物和餐饮等配套基础设施。通常情况下,如果房屋周边部分设施配备不齐或缺失,则按相应比例减少515%。看小区无小区配套5%房屋的配套设施的完善与否,对居家来说尤为重要。在同一
10、地段,二手房的小区环境会逊色于新住宅区,根据小区平面布局、设施、绿化、运动设施的配备以及房屋的外观造型等情况,需减少35%左右。看市场当时供需关系5%8%二手房买卖必需考虑到买家的心理因素,买旧房需折旧8左右,如果区域内的二手房非常抢手,该比例可适当提高5%左右。四、 各大网站模型数据365提问从经纪人处获取合房提问从经纪人处获取搜房无百瑞无乐居无安居客二手房估价系统365、合房网是在由用户提交房源信息,经纪人经过估值进行回复,区间范围大概在500元左右。安居客则有自己的二手房估价系统。在安居客系统中随机输入几套房源验证理论,试着得出其对二手房估价的大概标准。房产网站上显示的最新均价已经是由市
11、场经济规律决定的,是动态变化的,在计算时已经将楼盘的基本信息考虑进去,包括区位、建筑和邻里环境因素等。在使用中可以粗略的只利用建筑年限来进行估算,因为区位和邻里环境对房屋的均价影响较大。房源一:金域华府在安居客输入金域华府的一套房源后,在未填写选填条件和填写选填条件后获得不同的结果。每平单价房价默认118791187900未填写选填信息估价112001120000填写选填信息估价121001210000房屋面积:建筑面积100平方附近新商品房价格为:11879元/平方米(参考价) 容积率:3.56绿化率:42%(高)物业管理:万科自带物业建筑年代:2012年,折旧3年-(3*2%)=-6%套型
12、:经典3房朝向:南北附件交通、商业、教育、医疗条件便利装修折旧心理因素:0(视具体情况而定)单价:11879*(1-6%)11166.26(元/平方) 总价:11166.26*100111.66万元而按照均价进行估价是112万元。111.66/11299.67%,误差比较小。房源二:融科九重锦在安居客输入融科九重锦的一套房源后,在未填写选填条件和填写选填条件后获得不同的结果。每平单价房价默认9987948765未填写选填信息估价9368890000填写选填信息估价9789930000房屋面积:建筑面积95平方附近新商品房价格为:9987元/平方米(参考价) 容积率:3.2绿化率:41%(高)物
13、业管理:融科自带物业建筑年代:2010年,折旧5年-(5*2%)=-10%套型:经典3房朝向:南北附件交通、商业、教育、医疗条件便利:装修折旧心理因素:0(视具体情况而定)单价:9987*(1-10%)8988.3(元/平方) 总价:8988.3*10089.88万元而按照均价进行估价是89万元。89.88/89100.99%,误差比较小。房源三:和一花园在安居客输入和一花园的一套房源后,在未填写选填条件和填写选填条件后获得不同的结果。每平单价房价默认7262689890未填写选填信息估价7000630000填写选填信息估价7052670000房屋面积:建筑面积90平方附近新商品房价格为:72
14、62元/平方米(参考价) 容积率:1.43绿化率:40%(高)物业管理:安徽富安物业管理有限公司建筑年代:2010年,折旧5年-(5*2%)=-10%套型:经典3房朝向:南北附件交通、商业、教育、医疗条件比较便利,西二环望江路修好后会更加便捷。装修折旧心理因素:0(视具体情况而定)单价:7262*(1-10%)6535.8(元/平方)总价:8988.3*10062万元而按照均价进行估价是68.98万元。89.88/8990%,误差稍大。五、 建立评估模型在安居客二手房评估系统中能看出以下几个特征变量对估价的影响最大:总楼层、卧室数、朝向。而景观和车位这两个高级属性对房价的提高作用也很大。将上面
15、的三组数据制作成下表:分类类别金域华府融科九重锦和一花园默认选择1128863楼号无影响楼层多层1148863高层1129062户型2卧室11590643卧室11289634卧室1138862朝向南1128863其他1118762默认选择1219367装修空1129367毛胚1139467简装1149468精装1159569豪装1169669花园10平以下无影响无影响无影响景观景观房1199870侧景观房1159568一般1129367车位有1159367无1129065离出口近1159467远1129266适中1139366小区配套无影响无影响无影响下面使用excel2013进行建模。设置不
16、同类别下面的属性权值如下:假设P=a+bx1+cx2+dx3+ex4+fx5+gx6+hx7利用excel2013进行多元线性统计获得如下数据:第一张表是“回归统计表”:其中:Multiple R:(复相关系数R)R2的平方根,又称相关系数,用来衡量自变量x与y之间的相关程度的大小。本例R= 0.852423351表明它们之间的关系为高度正相关。(Multiple:复合、多种)R Square:复测定系数,上述复相关系数R的平方。用来说明自变量解释因变量y变差的程度,以测定因变量y的拟合效果。此案例中的复测定系数为0.852423351,表明用用自变量可解释因变量变差的85.24%Adjust
17、ed R Square:调整后的复测定系数R2,该值为0.66489586,说明自变量能说明因变量y的66.49%,因变量y的33.51%要由其他因素来解释。( Adjusted:调整后的)标准误差:用来衡量拟合程度的大小,也用于计算与回归相关的其它统计量,此值越小,说明拟合程度越好观察值:用于估计回归方程的数据的观察值个数。第二张表是“方差分析表”:主要作用是通过F检验来判定回归模型的回归效果。该案例中的Significance F(F显著性统计量)的P值为0.000000329,小于显著性水平0.05,所以说该回归方程回归效果显著,方程中至少有一个回归系数显著不为0.(Significan
18、ce:显著)第三张表是“回归参数表”:据此可得出估算的回归方程为:P=102.9068073-5.93438楼层-3.29899户型+0.601558朝向+2.323953装修+4.339125景观-9.23089车位-11.5608离入口该表中重要的是T列,该列的中的P-value为回归系数t统计量的P值。值得注意的是:其中f、g的t统计量的P值为0.002285168和0.00037715,远小于显著性水平0.05,因此该两项的自变量与y相关。而其他各项的t统计量的P值远大于f、g的t统计量的P值,但如此大的P值说明这些项的自变量与因变量不存在相关性,因此这些项的回归系数不显著。使用获得公
19、式带入不同情况的权值计算房产的估计,与安居客的估价进行对比。39组数据的绝对误差是0.099460043,也就是9.94%,处在可以接受的范围。六、 进行数据验证选取保利香槟国际的房源数据进行验证。可以看到使用公式获得数据与真实数据比较接近,平均误差大概在9.26%左右,而这个误差与模型中的误差也基本一致。七、 结论与分析从上述分析可以得出该评估模型具备一定的可行性,能够在日常生活中起到指导作用。我们可以先使用模型获得的估价方案,经过实际应用和数据反馈来调整修改模型,以便获得更准确的模型。但是本方案也存在局限性:(1)数据真实性未经验证。数据主要来源于房产网站,部分内容可能存在夸大或不实,部分楼盘价格未体现折扣信息;(2)在使用基于特征价格理论时需要获取大量数据才能保证所得结果接近准确,而本调研所选取样本量较少,同时未体现楼盘内部不同层级、不同户型住宅价格差别。如能加大样本量,完善变量构成,模型的预测精度会有明显提升。如能通过专业的数理统计获得房价完全基于特征变量的公式,在实际应用中会更为方便。(3)如果采用基于随机森林原理的模型进行评估会更加准确。尽管基于随机森林原理的模型不会得出公式,但是其理论的先进性能确保其在应用中的准确性和广泛性。