1、 目录第一章绪论11.1 选题的意义11.2 本课题的研究目的21.3 桥式起重机的研究现状2第二章 设计方案42.1 起重机的介绍42.2 起重机设计的总体方案42.2.1 主梁的设计42.2.2 小车的设计42.2.3端梁的设计52.2.4桥架的设计5第三章 大车行车机构的设计63.1 设计的原则和要求63.1.1 机构传动方案63.1.2 大车行车机构布局63.2 搭车行车机构的计算73.2.1 确定结构的传动方案73.2.2 选择车轮与轨道并校核其强度73.2.3 运行组里的计算93.2.4 选择电动机103.2.5 计算发动机的发热功率113.2.6 减速器的选择113.2.7 验算
2、运行速度与实际功率113.2.8 验算启动时间123.2.9 校核减速器功率133.2.10 验算不打滑条件133.2.11 选择制动器153.2.12 选择联轴器163.2.13 验算浮动轴173.2.14 缓冲器的选择18第四章 端梁的设计204.1 端梁尺寸的确定214.2 端梁的计算214.3主要焊缝的计算24第五章 端梁结头的设计265.1 端梁接头的确定和计算265.2 主要螺栓和焊缝的设计29第六章 桥架的结构设计316.1 桥架的结构形式316.2 桥架的结构设计与计算31第七章 焊接工艺设计39致谢42参考文献43附录44第一章 绪 论1.1 选题意义起重机械用来对物料作起重
3、、运输、装卸和安装等作业的机械设备,它可以完成靠人力无法完成的物料搬运工作,减轻人们的体力劳动,提高劳动生产率,在工厂、矿山、车站、港口、建筑工地、仓库、水电站等多个领域部门中得到了广泛的使用,随着生产规模的日益扩大,特别是现代化、专业化的要求,各种专门用途的起重机相继产生,在许多重要的部门中,它不仅是生产过程中的辅助机械,而且已成为生产流水作业线上不可缺少的重要机械设备,它的发展对国民经济建设起着积极的促进作用。起重机械是起升,搬运物料及产品的机械工具。起重机械对于提高工程机械各生产部门的机械化,缩短生产周期和降低生产成本,起着非常重要的作用在高层建筑、冶金、华工及电站等的建设施工中,需要吊
4、装和搬运的工程量日益增多,其中不少组合件的吊装和搬运重量达几百吨。因此必须选用一些大型起重机进行吊装工作。通常采用的大型起重机有龙门起重机、门座式起重机、塔式起重机、履带起重机、轮式起重机以及在厂房内装置的桥式起重机等。在道路,桥梁和水利电力等建设施工中,起重机的使用范围更是极为广泛。无论是装卸设备器材,吊装厂房构件,安装电站设备,吊运浇注混凝土、模板,开挖废渣及其他建筑材料等,均须使用起重机械。尤其是水电工程施工,不但工程规模浩大,而且地理条件特殊,施工季节性强、工程本身又很复杂,需要吊装搬运的设备、建筑材料量大品种多,所需要的起重机数量和种类就更多。在电站厂房及水工建筑物上也安装各种类型的
5、起重机,供检修机组、起闭杂们及起吊拦污栅之用。在这些起重机中,桥式起重机是生产批量最大,材料消耗最多的一种。由于这种起重机行驶在高空,作业范围能扫过整个厂房的建筑面积,因而受到用户的欢迎,得到很大的发展。图1-1是典型的双梁桥式起重机。 图1-1 双梁桥式起重机1.2 本课题的研究目的(1)熟悉桥式起重机的结构和工作原理 (2)掌握桥式起重机的设计方法 (3)将所学的理论知识应用到实际的生产设计中去,培养实际动手能力 (4)了解制造业的发展,为以后工作做准备1.3 桥式起重机的研究现状目前,在工程起重机械领域,欧洲、美国和日本处于领先地位。欧洲作为工程起重机的发源地,轮式起重机生产技术水平最高
6、。该地区的工程起重机械业主要生产全地面起重机、履带式起重机和紧凑型轮胎起重机,也生产少量汽车起重机。其中,全路面起重机、履带起重机以中大吨位为主;紧凑型轮胎起重机则以小吨位为主;汽车起重机一般为通用底盘组装全地面上车,即以改装为主。其产品技术先进、性能高、可靠性高,产品销往全球。 美国工程起重机行业的技术水平相对落后于欧洲。不过近年来,美国工程起重机械业通过收购和合并手段,得以蓬勃发展。目前该地区主要生产轮胎起重机、履带式起重机、全路面起重机和汽车起重机。主要生产企业为马尼托瓦克公司,特点是技术较先进、性能较高、可靠性能高,其中汽车底盘技术和全路面技术领先于欧洲,产品主要销往美洲地区和亚太地区
7、。 日本作为二战后崛起的经济强国,轮式起重机开发生产虽然起步较晚(起步于20世纪70年代),但是发展速度很快,很受亚太市场欢迎。此外,日本还通过收购手段更新生产技术。如日本多田野通过收购德国法恩底盘公司,发展全路面技术。日本工程起重机械业主要生产汽车起重机、履带起重机、越野轮胎起重机和全路面起重机。其中,越野轮胎起重机的产量最大,汽车起重机的产量次之,呈减少趋势,全路面起重机的产量最少,呈上升趋势。主要生产企业包括多田野、加藤、神钢、日立和小松等。产品特点是技术水平和性能较高,但可靠性落后于欧美。随着我国经济建设步伐的加快,生产和生活各个领域的建设规模的逐年扩大,也促进了施工机械化程度的迅速提
8、高。先进的施工机械已成为加快施工速度,保证工程质量和降低成本的物质保证。起重机行业也因此得到了很大的发展。为促进社会主义建设事业的发展,提高劳动生产率,充分发挥其中运输机械的作用是具有重要意义的。第二章 设计方案2.1起重机的介绍箱形双梁桥式起重机是由一个有两根箱形主梁和两根横向端梁构成的双梁桥架,在桥架上运行起重小车,可起吊和水平搬运各类物体,它适用于机械加工和装配车间料场等场合。2.2起重机设计的总体方案 本次起重机设计的主要参数如下:1)起重量:10t;2)起升高度:12m;3)起升速度:10m/min; 4)小车运行速度:40 m/min;5)大车运行速度:80 m/min;6)跨度:
9、16.5m ;7)工作级别A5根据上述参数确定的总体方案如下2.2.1主梁的设计主梁跨度16.5m ,是由上、下盖板和两块垂直的腹板组成封闭箱形截面实体板梁连接,主梁横截面腹板的厚度为6mm,翼缘板的厚度为10mm,主梁上的走台的宽度取决于端梁的长度和大车运行机构的平面尺寸,主梁跨度中部高度取H=L/17 ,主梁和端梁采用搭接形式,主梁和端梁连接处的高度取H0=0.4-0.6H,腹板的稳定性由横向加劲板和,纵向加劲条或者角钢来维持,纵向加劲条的焊接采用连续点焊,主梁翼缘板和腹板的焊接采用贴角焊缝,主梁通常会产生下挠变形,但加工和装配时采用预制上拱。2.2.2小车的设计小车主要有起升机构、运行机
10、构和小车架组成。起升机构采用闭式传动方案,电动机轴与二级圆柱齿轮减速器的高速轴之间采用两个半齿联轴器和一中间浮动轴联系起来,减速器的低速轴鱼卷筒之间采用圆柱齿轮传动。运行机构采用全部为闭式齿轮传动,小车的四个车轮固定在小车架的四周,车轮采用带有角形轴承箱的成组部件,电动机装在小车架的台面上,由于电动机轴和车轮轴不在同一个平面上,所以运行机构采用立式三级圆柱齿轮减速器,在减速器的输入轴与电动机轴之间以及减速器的两个输出轴端与车轮轴之间均采用带浮动轴的半齿联轴器的连接方式。小车架的设计,采用粗略的计算方法,靠现有资料和经验来进行,采用钢板冲压成型的型钢来代替原来的焊接横梁。2.2.3端梁的设计端梁
11、部分在起重机中有着重要的作用,它是承载平移运输的关键部件。端梁部分是由车轮组合端梁架组成,端梁部分主要有上盖板,腹板和下盖板组成;端梁是由两段通过连接板和角钢用高强螺栓连接而成。在端梁的内部设有加强筋,以保证端梁架受载后的稳定性。端梁的主要尺寸是依据主梁的跨度,大车的轮距和小车的轨距来确定的;大车的运行采用分别传动的方案。在装配起重机的时候,先将端梁的一段与其中的一根主梁连接在一起,然后再将端梁的两段连接起来。 2.2.4桥架的设计桥架的结构主要有箱形结构,空腹桁架式结构,偏轨空腹箱形结构及箱形单主梁结构等,参考起重机设计手册,5-80吨中小起重量系列起重机一般采用箱形结构,且为保证起重机稳定
12、,我选择箱形双梁结构作为桥架结构。箱形双梁桥架是由两根箱形主梁和端梁构成,主梁一侧安置水平走台,用来安装大车运行机构和走人,主梁与端梁刚性地连接在一起,走台是悬臂支撑在主梁的外侧,走台外侧安置有栏杆。在实际计算中,走台个栏杆均认为是不承受力的构件。为了操纵和维护的需要,在传动侧走台的下面装有司机室。司机室有敞开式和封闭式两种,一般工作环境的室内采用敞开式的司机室,在露天或高温等恶劣环境中使用封闭式的司机室。本章主要对箱形桥式起重机进行介绍,确定了其总体方案并进行了一些简单的分析。箱形双梁桥式起重机具有加工零件少,工艺性好、通用性好及机构安装检修方便等一系列的优点,因而在生产中得到广泛采用。我国
13、在5吨到10吨的中、小起重量系列产品中主要采用这种形式,但这种结构形式也存在一些缺点:自重大、易下挠,在设计和制造时必须采取一些措施来防止或者减少。第三章 大车运行机构的设计3.1设计的基本原则和要求大车运行机构的设计通常和桥架的设计一起考虑,两者的设计工作要交叉进行,一般的设计步骤:1. 确定桥架结构的形式和大车运行机构的传方式2. 布置桥架的结构尺寸3. 安排大车运行机构的具体位置和尺寸4. 综合考虑二者的关系和完成部分的设计 对大车运行机构设计的基本要求是:1. 机构要紧凑,重量要轻2. 和桥架配合要合适,这样桥架设计容易,机构好布置3. 尽量减轻主梁的扭转载荷,不影响桥架刚度4. 维修
14、检修方便,机构布置合理3.1.1机构传动方案大车机构传动方案,基本分为两类:分别传动和集中传动,桥式起重机常用的跨度(10.5-32M)范围均可用分别传动的方案本设计采用分别传动的方案。3.1.2大车运行机构具体布置的主要问题1. 联轴器的选择2. 轴承位置的安排3. 轴长度的确定这三着是互相联系的。在具体布置大车运行机构的零部件时应该注意以几点:1. 因为大车运行机构要安装在起重机桥架上,桥架的运行速度很高,而且受载之后向下挠曲,机构零部件在桥架上的安装可能不十分准确,所以如果单从保持机构的运动性能和补偿安装的不准确性着眼,凡是靠近电动机、减速器和车轮的轴,最好都用浮动轴。2. 为了减少主梁
15、的扭转载荷,应该使机构零件尽量靠近主梁而远离走台栏杆;尽量靠近端梁,使端梁能直接支撑一部分零部件的重量。3. 对于分别传动的大车运行机构应该参考现有的资料,在浮动轴有足够的长度的条件下,使安装运行机构的平台减小,占用桥架的一个节间到两个节间的长度,总之考虑到桥架的设计和制造方便。4. 制动器要安装在靠近电动机,使浮动轴可以在运行机构制动时发挥吸收冲击动能的作用。3.2 大车运行机构的计算已知数据:起重机的起重量Q=100KN,桥架跨度L=16.5m,大车运行速度Vdc=90m/min,工作类型为中级,机构运行持续率为JC%=25,起重机的估计重量G=168KN,小车的重量为Gxc=40KN,桥
16、架采用箱形结构。计算过程如下:3.2.1确定机构的传动方案本起重机采用分别传动的方案如图(2-1)大车运行机构图(2-1)1电动机 2制动器 3高速浮动轴 4联轴器 5减速器 6联轴器 7低速浮动轴 8联轴器 9车轮3.2.2 选择车轮与轨道,并验算其强度按照如图所示的重量分布,计算大车的最大轮压和最小轮压:满载时的最大轮压:Pmax= =95.6KN空载时最大轮压:Pmax= = =50.2KN空载时最小轮压:Pmin= = =33.8KN式中的e为主钩中心线离端梁的中心线的最小距离e=1.5m载荷率:Q/G=100/168=0.595由1表19-6选择车轮:当运行速度为Vdc=60-90m
17、/min,Q/G=0.595时工作类型为中级时,车轮直径Dc=500mm,轨道为P38的许用轮压为150KN,故可用。 =4929.8 N/cm2由1表 查得t=9500 N/cm2,因此焊缝计算应力满足要求。第五章 端梁接头的设计5.1 端梁接头的确定及计算端梁的安装接头设计在端梁的中部,根据端梁轮距K大小,则端梁有一个安装接头。端梁的街头的上盖板和腹板焊有角钢做的连接法兰,下盖板的接头用连接板和受剪切的螺栓连接。顶部的角钢是顶紧的,其连接螺栓基本不受力。同时在下盖板与连接板钻孔是应该同时钻孔。如下图为接头的安装图下盖板与连接板的连接采用M18的螺栓,而角钢与腹板和上盖板的连接采用M16的螺
18、栓。(a)连接板和角钢连接图4-1(b)5.1.1 腹板和下盖板螺栓受力计算1.腹板最下一排螺栓受力最大,每个螺栓所受的拉力为: N拉=12500N2.下腹板每个螺栓所受的剪力相等,其值为: N剪= = =7200N式中n0下盖板一端总受剪面数;n0=12 N剪 下盖板一个螺栓受剪面所受的剪力: n一侧腹板受拉螺栓总数;n=12 d1腹板上连接螺栓的直径(静截面) d0下腹板连接螺栓的直径;d1=16mm H梁高;H=500 mm M连接处的垂直弯矩;M=7.06106其余的尺寸如图示5.1.2 上盖板和腹板角钢的连接焊缝受力计算1. 上盖板角钢连接焊缝受剪,其值为: Q= =172500N2
19、.腹板角钢的连接焊缝同时受拉和受弯,其值分别为: N腹= = =43100NM腹= =2843000Nmm5.2 计算螺栓和焊缝的强度5.2.1 螺栓的强度校核1.精制螺栓的许用抗剪承载力:N剪= = =103007.7N 2.螺栓的许用抗拉承载力N拉= =27129.6N式中t=13500N/cm2 s=13500N/cm2 由1表25-5查得由于N拉N拉 ,N剪N剪 则有所选的螺栓符合强度要求5.2.2 焊缝的强度校核1.对腹板由弯矩M产生的焊缝最大剪应力:tM=15458.7N/ cm2式中I =395.4 焊缝的惯性矩其余尺寸见图 2.由剪力Q产生的焊缝剪应力:tQ= =4427.7N
20、/ cm2折算剪应力:t= =16079.6 N/ cm2t=17000 N/ cm2t由1表25-3查得式中h焊缝的计算厚度取h=6mm3.对上角钢的焊缝t=211.5 N/ cm2t由上计算符合要求。第六章 桥架结构的设计6.1 桥架的结构形式桥架的结构主要有箱形结构,空腹桁架式结构,偏轨空腹箱形结构及箱形单主梁结构等,参考起重机设计手册,5-80吨中小起重量系列起重机一般采用箱形结构,且为保证起重机稳定,我选择箱形双梁结构作为桥架结构。6.1.1 箱形双梁桥架的构成箱形双梁桥架是由两根箱形主梁和端梁构成,主梁一侧安置水平走台,用来安装大车运行机构和走人,主梁与端梁刚性地连接在一起,走台是
21、悬臂支撑在主梁的外侧,走台外侧安置有栏杆。在实际计算中,走台个栏杆均认为是不承受力的构件。为了操纵和维护的需要,在传动侧走台的下面装有司机室。司机室有敞开式和封闭式两种,一般工作环境的室内采用敞开式的司机室,在露天或高温等恶劣环境中使用封闭式的司机室。6.1.2 箱形双梁桥架的选材箱形双梁桥架具有加工零件少,工艺性好,通用性好等优点。桥架结构应根据其工作类型和使用环境温度等条件,按照有关规定来选用钢材。为了保证结构构件的刚度便于施工和安装,以及运输途中不致损坏等原因,在桥架结构的设计中有最小型钢的使用限制:如连接用钢板的厚度应不小于4mm。又如对组合板梁的板材使用,因保证稳定性和防止锈蚀后强度
22、减弱等原因,双腹板的每块厚度不能小于6mm,单腹板的厚度不小于8mm。作用在桥式起重机桥架结构上的载荷有,固定载荷,移动载荷,水平惯性载荷及大车运行歪斜产生的车轮侧向载荷等。在设计计算时候要考虑到这些载荷。6.2 桥架结构的设计计算6.2.1 主要尺寸的确定大车轮距=2.0653.3取=3桥架端部梯形高度=()=()16.5=1.653.3取=3主梁腹板高度根据主梁计算高度=0.92最后选定腹板高度=0.9确定主梁截面尺寸主梁中间截面各构件根据起重机课程设计表7-1确定如下:腹板厚=6,上下盖板厚=8主梁两腹板内壁间距根据下面的关系式来确定:=263=330因此取=350盖板宽度:=350+2
23、6+40=402取=400主梁的实际高度:=516主梁中间截面和支承截面的尺寸简图分别示于图2-1和2-2主梁中间截面尺寸简图 主梁支承截面尺寸简图加劲板的布置尺寸为了保证主梁截面中受压构件的局部稳定性,需要设置一些加劲构件。主梁端部大加劲板的间距:0.9,取=0.8主梁端部(梯形部分)小加劲板的间距:=0.4主梁中部(矩形部分)大加劲板的间距:=(1.52)=1.351.8,取=1.6主梁中部小加劲板的间距,小车钢轨采用轻轨,其对水平重心轴线的最小抗弯截面模数=47.7,则根据连续梁由钢轨的弯曲强度条件求得加劲板间距(此时连续梁的支点既加劲板所在位置,使一个车轮轮压作用在两加劲板间距的中央)
24、:=141=1.41式中小车的轮压,取平均值。 动力系数,由起重机课程设计图2-2查得=1.15; 钢轨的许用应力,=170因此,根据布置方便,取=0.8由于腹板的高厚比=150160,所以不需要设置水平加劲杆。6.2.2 主梁的计算计算载荷确定查起重机课程设计图7-11得半个桥架(不包括端梁)的自重,=41,则主梁由于桥架自重引起的均布载荷:采用分别驱动,查起重机课程设计表7-3得主梁的总均布载荷:2.5+2.5=5主梁的总计算均布载荷:=1.15=5.5式中 =1.1冲击系数,由起重机课程设计表2-6查得。作用在一根主梁上的小车两个车轮的轮压值可根据起重机课程设计表7-4中所列数据选用:
25、=37000 =36000考虑动力系数的小车车轮的计算轮压值为: =1.1537000=42550 =1.1536000=41400主梁垂直最大弯矩计算主梁垂直最大弯矩:+设敞开式司机操纵室的重量为9807,起重心距支点的距离为=280将各已知数值代入上式计算可得: =510主梁水平最大弯矩 计算主梁水平最大弯矩:式中 作用在主梁上的集中惯性载荷为:=作用在主梁上的均布惯性载荷为:=0.25计算系数时,取近似比值=2;=100;且=400;=200。因此可得:=1650+=1716=主梁的强度验算主梁中间截面的最大弯曲应力:=式中 主梁中间截面对水平中心轴线的抗弯截面模数,其近似值:=4500
26、 主梁中间截面对垂直重心轴线的抗弯截面模数,其近似值:=2263因此可得: =()0.1=121.6由起重机课程设计表2-24查得 A3钢的许用应力为:= 故 主梁支承截面的最大剪应力:式中 主梁支承截面所受的最大剪力=42000+41400=137420主梁支承截面对水平重心轴线的惯性矩,其近似值:=54180主梁支承截面半面积对水平重心轴线的静矩:= = =1266由此可得: =0.1=28.16查得许用剪应力为=95故由以上计算可知,强度足够。主梁的垂直刚度验算主梁在满载小车轮压作用下所产生的最大垂直挠度:式中 =0.973 =由此可得: =0.844允许的挠度: =因此第七章 焊接工艺
27、设计对桥式起重机来说,其桥架结构主要是由很多钢板通过焊接的方法连接在一起,焊接的工艺的正确与否直接影响桥式起重机的力学性能和寿命。角焊缝常用的确定焊角高度的方法7-1角焊缝最小厚度为:a0.3dmax+1dmax为焊接件的较大厚度,但焊缝最小厚度不小于4mm,当焊接件的厚度小于4mm时,焊缝厚度与焊接件的厚度相同。角焊缝的厚度还不应该大于较薄焊接件的厚度的1.2倍,即:a1.2dmin按照以上的计算方法可以确定端梁桥架焊接的焊角高度a=6mm.在端梁桥架连接过程中均采用手工电弧焊,在焊接的过程中焊缝的布置很关键,桥架的焊缝有很多地方密集交叉在设计时应该避免如图7-1(a)、7-1(b)示7-2
28、(a)7-2(b)定位板和弯板的焊接时候,由于定位板起导向作用,在焊接时要特别注意,焊角高度不能太高,否则车轮组在和端梁装配的时,车轮组不能从正确位置导入,焊接中采用E5015(J507)焊条,焊条直径d=3.2mm,焊接电流160A,焊角高度最大4。如图7-2位弯板和定位板的焊接7-3 角钢和腹板、上盖板的焊接采用的是搭接的方法,在焊好后再将两段端梁拼在一块进行钻孔。由于所用的板材厚度大部分都小于10mm ,在焊接过程中都不开坡口进行焊接。致谢首先向机电工程系的全体老师表示衷心的感谢,在这三年的时间里,他们为我们的成长和进步做出了贡献。在这次毕业设计中,有许多老师给予了指导和帮助,尤其是卢杉
29、老师和张曙灵老师,在这次毕业设计的整个过程中,给了我们很大帮助,做为我们的辅导老师,尽职尽责,一丝不苟。至此,这次毕业设计也将告以段落,但老师的教诲却让人终生难忘,通过这次毕业设计,不但使我学到了知识,也让我学到了许多的道理,总之是受益匪浅。尽管我在毕业设计过程中做出了很多的努力,但由于我的水平有限,设计中的错误和不当之处仍在所难免,望老师提出宝贵的意见。最后,向文中引用到其学术论著及研究成果的学术前辈与同行们致谢!再次向敬爱的老师表示衷心的感谢! 参考文献1 严大考 郑兰霞 起重机械 郑州大学出版社 2003年2 田复兴 最新国内外起重机械实用技术性能手册中国水利水电出版社,2004年3 崔
30、碧海 起重技术 重庆大学出版社 2003年4 黄大魏 李风 毛文杰 现代起重运输机械 化学工业出版社 2006年5 坂本种芳 长谷川政弘 桥式起重机设计计算 中国铁道出版社 1987年 6 张质文 刘全德 起重运输机械 中国铁道出版社 1983年7 第一机械工业部起重运输机械研究所主编 机械工程手册 起重机械 机械工业出版社 1979年8 起重机设计手册编写组编 起重机设计手册 机械工业出版社 1980年9 濮良贵. 机械设计 M.北京: 高等教育出版社,2001年10 陈道南 盛汉中 起重机课程设计 冶金工业出版社 1983年11 陈道南 过玉卿 周培德 盛汉中 起重运输机械 机械工业出版社
31、 1981年12 胡宗武 顾迪民 起重机设计计算 北京科学技术出版社 1989年13 张质文 刘全德 起重运输机械 中国铁道出版社 1983年14 成大先.机械设计手册第4卷M.北京:机械工业出版社,200415 倪庆兴,王焕勇.起重机械M.上海:上海交通大学出版社,199016 机械工程手册 第67篇 起重机械 机械工业出版社 1979年17 GB3811-83.起重机设计规范S.北京: 中国标准出版社,1984 18 孙桓 陈作模 机械原理 高等教育出版社 1996年附录主要焊缝的焊接过程如下表:焊接顺序焊接名称焊接方法接头形式焊接工艺1小筋板腹板手工电弧焊双面角接不开坡口,采用E5015(J507)焊条,焊条直径d=4mm,焊接电流160210A2筋板腹板手工电弧焊双面角接同上3端面板腹板手工电弧焊双面角接同上4定位板弯板手工电弧焊搭接不开坡口,采用E5015(J507)焊条,焊条直径d=3.2mm,焊接电流160A弯板腹板手工电弧焊双面角接不开坡口,采用E5015(J507)焊条,焊条直径d=4mm,焊接电流160210A5角钢腹板手工电弧焊搭接同上角钢上盖板手工电弧焊搭接同上6腹板大筋板手工电弧焊角接同上7下盖板腹板手工电弧焊双面角接同上8大筋板下盖板手工电弧焊角接同上9上盖板腹板手工电弧焊角接同上10大筋板上盖板手工电弧焊角接同上第30页