1、XX站监测工程监测方案1 工程概况此次监测工程的监测范围是XX地铁站设计监测点、断面上的各项监测内容。1.1 工程位置及范围XX站位于XX市XX区周水子XX拟建新航站楼前停车场下方,呈东西向设置,车站主体北侧为周水子XX拟建航站楼停车场;东侧为现状XX航站楼落客平台环道;南侧、西侧为XX绕行道路.车站计算站台中心里程为右CK26+485.993;起、终点里程分别为右CK26+417。493(结构外皮)、右CK26+577。093(结构外皮)。建筑总面积共计9054 m2,车站共设2个出入口,一个紧急疏散口及两个风亭。车站2个出入口均布置在车站北侧,靠近XX拟建航站楼.1号出入口位于现有航站楼与
2、拟建航站楼中间连廊下方道路一侧;2号出入口与XX拟建航站楼结合设置;无障碍电梯设置在1号出入口内;车站消防专用出入口设置于XX拟建停车场上,靠近2号风亭位置;车站两组风亭均为高风亭,设置在拟建XX航站楼前停车场上。XX站采用明挖法施工,基坑支护采用混凝土灌注桩加钢管内支撑的方案。施工场地位于扩建XX范围内,原场地为XX前绿地及内部通道。地面树木及建筑已拆迁,地下部分管线有待改移。周围XX扩建工程正在施工,施工场需交叉作业,存在一定干扰。1。2 工程地质及水文地质XX站所处地貌为剥蚀低丘陵.表土层为第四系全新统冲积层(Qa1+p1),层厚0。6m1m.其下为全-中风化震旦系XX组白云质灰岩(Zw
3、hg),层厚为12m18m,风化震旦系XX组白云质灰岩强度为220250KPa。再其下为坚硬基岩,其间杂散分布燕山期辉绿岩(),分布于车站基坑层厚为0m3m,岩石强度达1500KPa。地下水主要赋存于岩石裂隙及溶隙中,略具承压性,水量一般至中等。场地溶洞可形成导水通道,易发生涌水。2 本监测方案编制依据本实施大纲主要依据以下规范标准和文件编制:1) XX市地铁2号线工程第三方监测工程3标标设计2) 城市轨道交通工程测量规范GB5030820083) 工程测量规范GB50026-20074) 城市测量规范GJJ13995) 全球定位系统(GPS)测量规范GB/T1831420096) 新建铁路工
4、程测量规范TB10101-997) 国家一、二等水准测量规范GB128972008) 地下铁道工程施工及验收规范GB5029920039) 建筑变形测量规程JGJ8200710) 城市地下水动态观测规程CJJ/T769811) 建筑基坑支护技术规程JGJ1209912) 建筑基坑工程监测技术规范GB50497200913) 地铁设计规范GB50307200314) “XX市地铁工程第三方监测技术要求”(XX市轨道交通管理公司)15) 其他相关的国家、地方规范、法规、企业标准、管理文件。3 监测目的为确保该工程支护结构本身的安全以及四周的地下管线、楼房和道路安全,在施工过程中宜采用信息化施工,即
5、运用多手段的联合监测,加强施工过程中的信息管理,做到定时监测,及时反馈。同时,通过监测信息,及时发现问题,及时采取相应对策,清除事故隐患,并根据实际情况修改、补充、完善设计和施工方案.4 项目组织4.1安全监控组织XX市轨道交通二号线一期工程第2标段(XX站、XX站XXX站区间、XXX站)监测工程项目由中铁十一局XX地铁项目部测量人员、工程技术人员和管理人员组成。项目负责人1名、现场总负责人3名。在项目部领导机构下设监测管理部和监测信息整理分析部,负责日常的管理和信息资料分析工作。现场监测组分为3个,即沉降监测组、应力应变监测组、围护结构变形、位移监测组,除了现场监测小组以外另设一个信息管理系
6、统组,负责监测信息管理系统的研制,以尽早在本项目中实现数据采集、数据计算、变形分析、报表制作一体化,做到能对整个监测的数据进行实时、动态的管理。XX市地铁2标施工阶段监测组织机构、各机构负责人见下图:4。2监测仪器设备组织本项目监测工程仪器配置如下:1) 全站仪1台(精度22mm+2ppmD ),包括配套觇牌2套;2) 精密水准仪1台(精度0。3mm/km),包括配套精密水准尺2根;3) 测斜仪1台(精度4mm/30m),包括配套线缆;4) 振弦式反力计(精度2.0FS)5) 地下水位计(精度5mm);6) 频率读数仪1台(精度0.05Hz);仪器应经过检验合格,经过计量专业部门的检定,并在规
7、定的检定有效期内,各仪器在每次工作之前均经过检校.测试元器件有出厂合格证,并在使用前进行标定.4.3人员组织技术人员配备表序号岗位姓名职称备注1组长项目经理2副组长总程师3副组长安全总监负责现场施工安全4组员副总工程师5工程部部长6测量工程师外业测量7测量工程师数据整理、分析8测量员9测量员10技术员11技术员5 监测内容在监测过程中,采用工程测量、工程测试等多种手段相结合的方法进行监测,并对相关数据进行综合分析,排除外界因素和监测系统的偶发性误差,从而提供精确、可靠、科学的监测数据.本工程需进行两方面的监测,一是支护结构本身在施工期间的安全、稳定监测;二是周围建筑物、地下管线的监测。具体监测
8、项目如下:(1)地面沉降;(2)邻近建筑物沉降;(3)地下管线沉降;(4)横通道拱顶沉降;(5)横通道净空收敛;(6)围护结构变形;(7)结构水平位移;(8)地下水位;6. 地表监测部分监测方法及技术要求6。1 地面沉降、桩顶沉降量测沉降监测根据监测对象周围的水准基点高程进行.水准基点从现场施工控制网基点引入。如果现场附近没有水准基点,则根据现场条件和监测时间要求埋设专用水准基点。水准基点数量不少于3个,分别布设在工点两侧,并定期进行校核,防止其自身发生变化,以保证沉降监测结果的正确性.水准基点在沉降监测的初次量测前不少于15天埋设。水准基点的埋设按以下要求进行:(1)布置在监测工点的沉降范围
9、以外,用f20钢筋打入冻土以下不少于0。2米,上部用C25砼包固,加盖保护,确保其稳固性;(2)水准基点与量测点通视良好,其距离小于100米,以保证监测精度;(3)水准基点的埋设避开松软、低洼积水处,以防变位。道路及地表监测点的埋设采取直接埋设法,将201000mm的钢筋直接打入土体中,顶部露出观测标,砌井保护,如图1所示:图 16。1。2 沉降监测方法及技术要求沉降监测采用徕卡DNA 03高精密电子水准仪,以保证监测精度.视线长度不大于50米,闭合差小于士0。5 mm,测量数据保留至0。lmm.同时沉降监测满足下列要求:(1)观测前对所用水准仪、水准尺按规定进行校验,并作好记录,在使用过程中
10、不随意更换;(2)首次进行观测增加测回数,且不少于3次,取其稳定值作为初始值;(3)固定观测人员、观测线路和观测方式;(4)定期进行水准点校核、测点检查和仪器校验,确保量测数据的准确性和连续性;6.1.3 沉降监测提供的相关资料(1)沉降监测计划,含水准点、测点的平面布置图;(见附图)(2)仪器校验记录资料;(3)监测记录及报告表;(4)沉降曲线及图表;(5)监测结果的计算分析资料;(6)沉降监测报告。6。2 邻近建筑物沉降监测6。2。1 对基坑周边建筑物的调查在开工前对施工现场周边不小于3H(H竖井深度)范围内建筑物进行普查,根据建筑物的历史年限、使用要求以及受施工影响程度,确定具体监测对象
11、。然后根据所确定的拟监测对象逐一进行详细调查,以确定重点监测部位。6。2.2 建筑物沉降监测(1)沉降观测点的位置和数量根据建筑物特征、基础形式结构种类和地质条件等因素综合考虑确定.为了反映沉降特征和便于分析,测点埋设在沉降差异较大的地方,同时考虑施工便利和不易损坏.(2)沉降观测标志根据建筑物的构造类型和建筑物材料确定。主要选用墙柱标志、基础标志和隐蔽式标志。对于不便埋设时,选用射钉或膨胀螺栓固定在建筑物表面,涂红油漆作为观测标志.沉降观测标志埋设时特别注意保证能在点上垂直置尺和良好的通视条件,同时监测时还要注意:仪器避免安置在有震动影响的范围内和有安全隐患的地点;观测时水准仪成像清晰,前后
12、视距相近,且不超过50米,前后视观测完毕应闭合在水准点上。6。3 地下管线沉降监测地下管线观测点采用带可移动式探针的“隐埋式”观测点,为真实反应管线的沉降,且不受周围土层沉降的影响,观测点结构示意图2如下:图2管线沉降点的布设图(1)管线资料调查通过建设、设计和施工单位了解地下管线的用途、材料、规格,管线的接头形式和对位移的敏感程度,确定位移警戒值。(2)测点埋设对于煤气管、主水管等重要管道采用扁铁做成抱箍固定在管线上,抱箍上焊一测杆。测杆顶端不应高出地面,路面处布设窨井,既用于测点保护,又便于道路交通正常通行。抱箍式测点监测精度高,能如实反映管线的位移情况。对于通讯管线采用直接式测点,即在露
13、出管线接头或保护管处,利用凸出部位涂上红漆作为测点.对于地下管线排列密集且管底标高相差不大或不便开挖的情况,采用模拟式测点,即选具代表性的管线,在其邻近打一fl00mm的钻孔,孔深至管底标高,取出浮土后用砂铺平孔底,先放入不小于f50 mm的钢板一片,以增大接触面积,然后放入f20mm的钢筋作为测杆,周围用净砂填实,以监测管线的位移。(3)本工程因周边建筑已拆迁,地下管线已改迁,无需进行地下管线监测.6.4桩顶位移监测(1)基坑内桩顶位移监测与桩顶沉降监测同步进行(2)建立平面控制网(见附图)平面控制网按两级布设,由控制点组成首级网,由观测点与所连测的点组成扩展网.控制点是进行水平位移观测的基
14、本依据,包括工作基点和基准点。工作点是直接观测的基础,基准点是检查工作点的依据,两者布设成控制网后按统一的观测精度施测。控制网采用导线网,扩展网和一级网采用基准线法,平面控制点采用普通标桩。(3)监测要求在位移监测中,由于允许位移量比较小(通常在1020mm),测量仪器精度要求较高。应采用有光学对中装置。计算位移值精度至0。1 mm,同时将同一位移值进行矢量叠加求出最大值与允许值进行比较.当最大位移值超出警戒值时应及时报警,防止意外的发生。7。 深基坑内监测方法及技术要求7.1桩体结构变形监测7。1。1 测斜点的布设原则(1)测斜点在竖井平面上绕曲计算值最大位置,设置水平支撑结构的两道支撑之间
15、;(2)设在重点监测对象最近的竖井围护段;(3)竖井挖深最大的围护段;(4)基坑围护桩桩体变形测孔埋设在桩身内;(5)测斜管中有一对槽口应自上而下始终垂直于竖井边线;(6)测斜管接口应避开探头滑轮停留处,以保证测量准确。7.1.2 测斜管的埋设对于车站基坑围护桩桩体变形测孔,在桩身浇注混凝土前将测斜管绑扎到桩身钢筋笼内,注意将测斜管管口露出桩身50厘米并用护口盖好,然后浇注混凝土,将其埋入桩身内。如下图4:图 47。1。3 测斜方法及步骤(1)基坑开挖前,测斜仪应按规定进行严格标定,以后根据使用情况,每隔3个月标定一次;(2)测斜管在基坑开挖前2周埋设完毕,在开挖前35日内重复测量2-3次,待
16、判明测斜管已处于稳定状态后,将其作为初始值,开始正式监测工作;(3)每次测量时,将探头导轮对准与所测位移方向一致的槽口缓缓放至管底,待探头与管内温度基本一致、显示仪读数稳定后开始测量;(4)以管口作为计程标志,按探头电缆线上的刻度分划,匀速提升,每隔一定距离(500mm或1000mm)进行仪表读数并做记录;(5)待探头提升至管口处,旋转180度后,再按上述方法测量一次,以消除测斜仪自身的误差;(6)以同一测斜管中不同深度处所测得的变位值,点在坐标上得到原始变位H曲线.根据不同二次测量的变位差值,绘制H曲线。7。2钢支撑轴力监测根据支护结构所采用的材料不同,选用不同的监测元件。对于钢筋混凝土支护
17、杆件,采用钢筋计测量钢筋的应力或混凝土应变计测量混凝土的应变,然后计算支撑的轴力。对于钢结构支撑杆件,采用轴力计直接测量支撑轴力.7.2。1 监测元件的布设对于钢结构支撑体系,监测断面布置在支撑的两头,监测用轴力计与支撑杆件相连,如采用焊接时应采取降温措施,以避免钢筋传热引起轴力计技术参数的改变。采用频率计或电阻应变计进行测读.在正式测量前,应对轴力计逐一进行测量检查,并对同一断面的轴力计进行位置核定、编号.7。2。2应力计算测量采用FLJ40型振弦式反力计,又称轴力计,是一种振弦式载重传感器。振弦式传感器主要由振弦,夹紧装置,受力机构,电磁回路及信号处理等几部分组成。 振弦式传感器以张紧的钢
18、弦作为敏感元件,其振弦的固有频率与张紧力有关.振弦式传感器正是利用振弦的固有频率随受力的大小而改变的特性将被测力转换为频率信号输出的测量元件.振弦置于永久磁场中,通过产生脉冲电流,使磁场发生变化,从而激发振弦振动。当激发脉冲断开时,振弦在磁场中的运动使线圈产生感应电动势,其频率与振弦的振动频率相同。 测量过程中用ZXY2型振弦读数仪测量出轴力计输出频率f,按下式求出支撑轴力p=k(f0-fi)。式中K为轴力计标定系数(kN/F);F0-原始频率模数;Fi实测频率模数.7。3地下水位观测7.3.1水位观测孔施工方案依据供水水文地质钻探与凿井操作规程(CJJ13)的有关规定,水位观测孔的施工主要包
19、括测量放线、成孔、井管加工、井管下放及井管外围填砾料等工序,其流程如图2水位观测孔施工流程图5所示。图5 水位观测孔施工流程图(1)成孔:水位观测孔采用清水钻进,钻头的直径为130,沿铅直方向钻进.在钻进过程中,应及时、准确地记录地层岩性及变层深度、钻进时间及初见水位等相关数据;钻孔达到设计深度后停钻,及时将钻孔清洗干净,检查钻孔的通畅情况,并做好清洗记录。(2)井管加工:井管的原材料为内径70、管壁厚度为2。5的PVC管。为保证PVC管的透水性,在PVC管下端04m范围内加工蜂窝状8的通孔,孔的环向间距为12mm,轴向间距为12mm,并包土工布滤网,井管的长度比初见水位长6。5m,如图6所示
20、.图6 水位观测井管结构图(3)井管放置:成孔后,经校验孔深无误后吊放经加工且检验合格的内径70的PVC井管,确保有滤孔端向下;水位观测孔应高出地面0。5m,在孔口设置固定测点标志,并用保护套保护;(4)回填砾料:在地下水位观测孔井管吊入孔后,应立即在井管的外围填粒径不大于5mm的米石;(5)洗井:在下管、回填砾料结束后,应及时采用清水进行洗井.洗井的质量应符合现行行业标准供水水文地质钻探与凿井操作规程(CJJ13)的有关规定.并做好洗井记录.7.3.2 观测原理地下水位观测设备采用电测水位仪,观测精度为0。5cm,其工作原理图如图7所示为:水为导体,当测头接触到地下水时,报警器发出报警信号,
21、此时读取与测头连接的标尺刻度,此读数为水位与固定测定的垂直距离,再通过固定测点的标高及与地面的相对位置换算成从地面算起的水位埋深及水位标高.图7 电测水位仪工作原理图7.3.3地下水位监测报警地下水位的监测报警值为累计变化5m;预警值为累计变化4。5m。当水位累计变化值接近报警值时,按实际情况加密监测;当累计变化值达到报警值时,在加密监测同时向有关单位提交书面报警文件,并初步分析其原因。7。3.4水位观测成果的报告在工程监测过程中,实时对监测结果进行整理,按业主代表的要求以周报形式送达业主、设计、监理、承包商。工程结束时,提交完成的监测总报告。在成果报告中将(1)绘制地下水位与时程的关系曲线;
22、(2)提供观测点的位置、编号及观测时间等相关数据。7。4土压力监测7.4。1 监测元件的布设根据施工地质和周边环境将此项作为选测项目.土压力计的安装如图所示,测量侧压力的安装方式,土压力盒绑扎于钢筋上,接触面紧贴土体一侧。测量竖向压力时,土压力计安装也如图8。图8 土压力计的安装示意图根据以往施工经验,土压力计绑扎在围护结构的钢筋上,成功的机会不是很大,因为在浇混凝土时,难以保证混凝土不包裹土压力计。最好的安装方法还是在围护结构的外面钻孔埋设土压力计,并在孔中注入与土体性质基本一致的物质,填实空隙。或采取预留孔后安装方式。7.4.2 监测元件安装要求1、根据结构要求先定测试点与测立方向.2、使
23、压力盒受力面包裹并压实。4、将导线沿结构体引出,最好采用护套管保护好。8爆破震速监测8。1 监测依据爆破安全规程(GB67222003)规定的“钢筋混凝土结构房屋”允许振动速度的下限(见下表),所以对于XX地区有抗震设计的建筑物完全可以按照GB67222003中“钢筋混凝土结构房屋取值.但是考虑到商户感受,应取 2.0cm/s 作为控制标准。爆破震动安全允许标准序号保护对象类别安全允许振速(cm/s) 10 Hz10 Hz50 Hz50 Hz100 Hz1土窑洞、土坯房、毛石房屋q0。51.00.71.21。11.52一般砖房、非抗震的大型砌块建筑物q2。02.52。32.82。73。03钢筋
24、混凝土结构房屋q3。04。03。54.54.25.04一般古建筑与古迹b0.10。30.20.40.30。55水工隧道c7156矿山巷道x10207交通隧道c15308水电站及发电厂中心控制室设备c0.59新浇大体积混凝土d:龄期:初凝3d龄期:3d 7d龄期:7d 28d2.0 3.03。07.07.012注1:表列频率为主振频率,系指最大振幅所对应波的频率.注2:频率范围可根据类似工程或现场实测波形选取。选取频率时亦可参考下列数据:酮室爆破20 Hz;深孔爆破10 H 60 Hz;浅孔爆破40Hz100 Hz 。a 选取建筑物安全允许振速时,应综合考虑建筑物的重要性、建筑质量、新旧程度、自
25、振频率、地基条件等因素。b 省级以上(含省级)重点保护古建筑与古迹的安全允许振速,应经专家论证选取,并报相应文物管理部门批准.c 选取隧道、巷道安全允许振速时,应综合考虑构筑物的重要性、围岩状况、断面大小、深埋大小、爆源方向、地震振动频率等因素。d 非挡水新浇大体积混凝土的安全允许振速,可按本表给出的上限值选取。8.2 爆破监测技术要求1爆破震速仪的使用1)仪器连接连接分为传感器和仪器的连接、数据通讯连接以及传感器的安装.传感器的连接需要将信号输入线连接在仪器和传感器之间才能保证传感器和仪器的连接。从信号输入口出来,首先连接的是航空接头的插头,插头的另一端是Q9头,也就是附件中的信号输入线。再
26、分别接到不同传感器的Q9座上.这样就完成了仪器和传感器的连接。但是要注意:仪器处于采集模式时禁止插拔传感器或者信号输入线,否则会导致仪器故障。数据通讯和充电的连接是通过仪器的多功能数据接口实现的.在6针的航空接头的外面接上它的插头,另一端有两个口:一是USB口,需要连接PC机时将USB口插入PC机的USB口中,再选择仪器菜单数据处理中的连接主机,作用是实现仪器和PC机的数据交换;二是电源的充电口,将充电器的输出端插入充电口中,充电器上的指示灯为红色是充电的警示标志,显示绿灯为充电完成。作用是对内部锂电池进行充电。2)传感器的安装爆破测点选择在爆破影响范围内的重要构筑物上,主要是深基坑周边的航站
27、楼及现浇混凝土附近。传感器在工作现场安装的时候必须保证它与被测的物体是一个钢性连接,也就是要保证传感器与被测物体是一个整体.否则所采集的信号不能保证是有效的信号数据。我项目部采用的三向传感器是一个正方体结构,安装方式可以有多种,可以使用配套的夹具安装,可以使用粘接的方式安装等。安装的位置可以是地面,侧壁和拱顶等。但是安装时请注意保持水平。3)参数设置参数设置包含了对采样信号的设置以及对传感器的参数的设定等。单个或一组连续信号采集前需要对采样参数设定,这样才能保证信号能被有效的采集以及能满足在恶劣环境下的信号采集.采样设定包含对采样频率的设定、对触发门限值的设定、触发方式的设定以及采样时间的设定
28、.4)数据采集通过仪器本身固有的功能完成对采集到的信号主要信息的读取:峰值(由物理量表示的信号在某一通道的最大值)、主频(某一通道的信号在采集地点的频率)、通道号(可以任意切换的三个不同通道的号码)以及信号发生的时间(信号被记录的日期和时间).以及对信号发生的波形粗略预览(同一时间不同通道的信息可以切换)。2数据分析通过USB口连接好电脑和仪器后,选择连接主机,在屏幕上会显示出连机状态.这个时候就可以实现仪器和电脑之间的数据交换和对仪器进的参数行软件设置与分析.参照爆破安全规程中爆破震动安全允许标准,有无超限,以确定是否安全.9监测频率与报警值在信息化施工中,监测后应及时对各种监测数据进行整理
29、分析,判断监测对象的稳定性,并及时反馈到施工中去指导施工.以铁路隧道喷锚构筑法技术规则(TBJ10892)的III级管理制度作为监测管理方式。本项目的管理分三个等级。变形管理表管理等级管理位移施工状态IIIUoUn/3可正常施工11Un/3 Uo 2Un/3应加强支护IUo2Un/3采取特殊措施注:U0实测位移值;Un-允许位移值 Un的取值,即监测控制标准。允许位移值的标准见下表:位移值控制标准序号监测项目控制标准1地表、建筑物、桩体沉降30mm2应力应变80%设计值3地下管线位移一般管线30mm上水10mm4围护结构水平位移0。2H,12mm5净空收敛0。005B,30mm在施工期间,监测
30、频率采取定时与跟踪相结合的方法,在监测数据出现异常的情况下,应加大监测频率,监测资料及时整理,监测信息及时反馈。具体监测频率见表:序号量测项目位置或对象测试元件测点布置监测频率监测报警值1地层及支护情况施工现场人员施工场地不间断2地面沉降基坑周边地表电子水准仪间距25m开挖期间一周内,2次天;开挖结束后,1次/3天;基坑变形、沉降稳定后,1/10天最大沉降量小于30mm,速率小于5mm/天3桩顶沉降围护桩上端部电子水准仪间距15m同地面沉降最大沉降量小于30mm,速率小于5mm/天4地下管线沉降位移管线改迁位置电子水准仪布置依具体情况而定同地面沉降(暂无)最大沉降量小于30mm,速率小于5mm
31、/天5建筑物沉降基坑周边需保护的建筑物电子水准仪间距1015米,距基坑5m范围内的建筑物需另布置监测点监测同地面沉降(暂无)最大沉降量小于30mm,速率小于5mm/天6支撑轴力钢支撑端部轴力计间距20m,布置依具体情况而定基坑开挖期间2次天,正常情况下1次天不超过设计允许最大值的70%7桩体变形围护结构内测斜仪间距60m,同一孔测点竖向间距0。51m基坑开挖期间2次1天,正常情况下1次3天最大位移量小于12mm,速率小于2mm/天8桩顶侧向位移围护桩上端部全站仪间距20m开挖前1次(初读数),土方开挖过程1次/天,底板浇筑前1次/周,浇筑后1次/半月0.20基坑开挖深度 9地下水位坑外水位孔水
32、位计基坑长边两端及中点各一处降水期间1次/天坑外水位累积下降2m,且速率0。50m/天10爆破震速监测重要构筑物爆破震速仪重要构筑物参考爆破时间参考爆破安全规程中爆破震动安全允许标准10现场安全巡视工作要求工程施工期间的各种变化具有时效性和突发性,加强对沿线周边环境及监测设施进行现场巡视检查是预防工程事故非常简便、经济而有效的方法.巡视检查工作主要以目测为主,配以锤、钎、量尺、裂缝仪、放大镜等工具以及数码相机等设备进行.该检查方法速度快、周期短,可及时弥补仪器监测不足.下述各项巡视检查项目之间大多存在内在的联系,其结合仪器监测工作,可以把定性、定量结合起来,更加全面地分析工程本体的安全性及施工
33、对周边环境的影响,使业主及施工各方能能完全客观真实地了解工程安全状态和质量程度,作出正确的判断.巡视检查发现的任何异常情况均可能是事故的预兆,采取应对措施,避免出现严重后果.10.1 现场安全巡视工作范围 现场巡视检查工作主要针对工程本体、沿线周边环境及监测设施,其范围取从基坑边缘向外2。5倍开挖深度或从隧道中线向外2.5倍隧道埋深且不小于30m范围,受爆破影响安全距离内的建构筑物。10。2 现场安全巡视内容10.2。1 施工工况1)开挖后暴露的地质情况与岩土勘察报告有无差异;2)基坑开挖分段长度、分层厚度是否存在超挖情况,与设计要求是否一致;3)基坑开挖坡度、开挖面暴露时间、施工工序是否符合
34、设计要求;4)基坑降水效果,包括抽降水控制效果、降水井位置、出水量及含沙量、变化情形及持续时间;5)基坑支护体系施作是否及时,支锚设置是否与设计要求一致;6)地表积水。包括积水面积、深度、水量、位置、地面硬化完好程度、坡顶排水系统是否合理及通畅等。7)基坑周边地面有无超载情况,包括坑边荷载重量、类型、与坑缘距离、面积、位置等。;8)开挖至坑底标高后,坑底是否及时满封闭并进行基础工程施工。10.2.2 支护结构 1)支护体系施作及时性情况,支护结构成型质量;2)冠梁、围檩、支撑有无裂缝出现;3)支撑、立柱有无较大变形及支撑发生脱开;4)止水帷幕有无开裂、渗漏;5)围护墙后土体有无裂缝、沉陷及滑移
35、;6)基坑内有无涌土、流沙、管涌现象。10。2.3 周边环境(1) 明挖基坑及近区间施工影响范围内重要建筑物1)建(构)筑物开裂、剥落,包括裂缝宽度、深度、数量、走向、剥落体大小、发生位置、发展趋势等.2)地下室渗水。包括渗水量、发生位置、发展趋势等。(2) 明挖基坑及区间下穿或旁穿的主要管线 1)管体或接口破损、渗漏。包括位置、管线材质、尺寸、类型、破损程度、渗漏情况、发展趋势。 2)检查井等附属设施的开裂及进水.包括裂缝宽度、深度、数量、走向、位置、发展趋势、井内水量等.(3) 明挖基坑矿山法隧道上方及明挖竖井周边道路及地表 1)地面开裂。包括裂缝宽度、深度、数量、走向、发生位置、发展趋势
36、. 2)地面沉陷、隆起。包括沉陷深度、隆起高度、面积、位置、距墩台的距离、距基坑(或隧道)的距离、发展趋势。 3)地面冒浆/泡沫。包括出现范围、冒浆/泡沫量、种类、发生位置、发展趋势等.(4) 既有山东路铁路、202路轻轨 1)结构开裂、剥落,包括裂缝宽度、深度、数量、走向、剥落体大小、发生位置、发展趋势等; 2)结构渗水,包括渗水量、发生位置、发展趋势等;3)道床结构开裂,包括裂缝宽度、深度、数量、走向、发生位置、发展趋势等;4)变形缝开合及错台,包括变形缝的扩展和闭合大小,变形缝处结构有无错开、位置、发展趋势等.(5) 疏港路铁路桥桩、疏港路立交桥桩、华北路高架桥及天桥 1)墩台、挡墙或梁
37、体开裂、剥落情况。包括裂缝宽度、深度、数量、走向、剥落体大小、发生位置、发展趋势等。 2)墩台周围地面沉陷. 3)伸缩缝变化情况等.(6) 沿线附近河流、湖泊 1)水面漩涡、气泡。包括水面有无出现漩涡、水泡、出现范围、发生位置、发展趋势。 2)堤坡开裂。包括裂缝宽度、深度、数量、走向、位置、发展趋势等。(7)周边临近施工情况:在施工程项目规模、结构、位置、进度、与轨道交通工程水平距离、垂直距离等。10。2。4 监测设施(1)基准点、监测点完好状况;(2)监测元器件的完好及保护情况;(3)有无影响监控观测工作的障碍物.10。3 现场安全巡视频率 每次现场监测工作实施时同时进行现场安全巡视,遇以下
38、情况应加密巡视频率:1)巡视检查时,工程本体或周边环境出现异常情况;2)监测数据连续三日达到变化速率监测警戒值;3)监控数据达到监测警戒值的累计值;4)线路周边其他工程项目出现险情时。10.4 现场安全巡视工作实施方法 巡视检查工作主要以目测为主,配以锤、钎、量尺、裂缝仪、放大镜等工具以及数码相机等设备进行。 (1)对重要的周边环境对象,应在施工影响前采用图表、影响、视频等方式记录初始状况;(2)现场巡视按要求填写巡视成果表.11监测质量管理11.1 质保规定要保证监测工程的质量,除了需要有先进的监测仪器设备及富有经验的工程技术人员外,更重要的还应通过建立明确的责任制和检查校核制度来予以保证。
39、为确保量测数据的真实性、可靠性和连续性,特制定以下工作制度和各项质量保证措施:(1)监控量测小组与监理工程师密切配合工作,及时向监理工程师报告有关情况和问题,并提供真实可靠的量测资料;(2)仪器在安装埋设的全过程中,对仪器、监测元器件和设备工艺等进行连续性的检验,以保证其质量的稳定性,并作安装记录.组长负责监测工作的组织计划、外协及监测资料的质量审核(3)制定切实可行的监测实施方案和相应的测点埋设保护措施;(4)成立专门监测组承担施工监测,量测人员保持固定,保证资料的连续性;(5)仪器的管理采用专人专用,专人保养,专人校检的方法;(6)仪器设备和元器件在使用前均经严格的校验,合格后方可投入使用
40、;(7)在监测过程中,必须遵守相应的测试细则及相应的规范要求;(8)量测资料均应经现场检查、室内复核两道程序后方可上报;(9)量测资料的储存、计算、管理均采用计算机系统管理,进行信息化管理.11.2作业规范(1)五固定:固定观测人员;固定观测仪器;固定观测水准尺;固定观测路线;固定观测方法.(2)每次观测之前将仪器露天放置30分钟。(3)烈日下观测使用测伞;温差变化较大时使用仪器罩.(4)常规水准观测顺序为后前前后。(5)在线路上预先量距,水准仪与水准尺之间的距离不超过50m,分别在水准尺和水准仪摆设处作相应标志。基本分分划、辅助分划读数较差 0。5mm基本分分划、辅助分划高差较差0.7mm相
41、邻两点间往返测高差之差限差 0。5mm线路闭合差限差 1。0n视距50m,前后视距差2。0m,视距累积差3。0m, 视线高度大于0。2m。单程观测,首次观测、控制网复测以及各周期观测中的工作基点稳定性检测应进行单程双测站观测。凡超出规定限差要求的成果,均应进行重测。11。3 监测反馈程序为了将监控量测数据在及时整理后报送相关单位,便于各单位根据监控量测结果了解整体工程的安全状况、对现场发生的布里情况迅速作出反应的应对措施,建立有效的信息沟通机制与数据保密工作。11。3。1报表内容在监控量测工作中的报告包含日报、周报、月报、年报、总结报告四种形式。(1)日报 包括关键性施工监控量测数据、施工工况
42、信息、巡视信息和预警建议信息等。(2)周报包括一周的施工监测、工况、巡视信息的统计及异常情况、预警情况、反馈意见落实情况及风险事务处理、效果、变化趋势、存在问题、下一步风险处理建议等。(3)月报包括一个月的施工监测、工况、巡视信息的统计及异常情况、预警情况、反馈意见落实情况及风险事务处理、效果、变化趋势、存在问题、下一步风险处理建议等.针对一个月的工作及时进行总结,总结成果以月报形式上报有关单位,月报具体内容应包括如下:1) 监控量测项目、测点布置2) 施工进度3) 监控量测值及时程变化曲线4) 监控量测预报分析5) 对于达到或超过报警值的测点分析原因6) 当月监控量测工作小结(4)年报包括本
43、年度的施工监测、工况、巡视信息的统计及异常情况、预警情况、反馈意见落实情况及风险事务处理、效果、变化趋势、存在问题、下一步风险处理建议等.(5)总结报告监控量测工作结束后,及时将监控量测结果总结分析,提交监控量测总报告.总报告内容包括:1) 工程概况、监控量测目的2) 监控量测工作大纲和实施方案3) 监控量测资料的分析处理4) 监控量测值及其全程变化曲线5) 施工中超前预报效果评述6) 工程监控量测结果11。3。2监控量测控制流程根据工程实际经验与相关规范规程要求制定警戒控制标准F(设定:F=实测值/安全控制标准值).安全控制标准值按设计提出为准则,必要情况下,可结合具体工程情况,经专家研讨会
44、结果确定.根据监测过程中F的变化,建立三级预警管理制度.级管理:F0。7时,视为安全;级管理:0。7 F 0。85时,为预警状态,要引起注意,加强观测,查找原因,准备补救措施。应通知甲方、施工方、监理、管理部门等相关单位;级管理:F0.85时,为警戒状态,并立即通知业主单位、甲方、监理单位、施工方,实施补救措施。当达到级管理时,应启动应急预案,采取必要的加强措施.在实际施工过程中,应同相关单位对于超过预警值所导致的结构受力变形等情况进行分析,对其可能造成的不利后果进行判断,并提出合理建议与措施。监控量测安全控制工作流程如图9所示。图9 监控量测安全控制流程图11。3。3 应急预案根据监控量测数
45、据反馈信息处于警戒状态时,应启动应急预案。拟设定应急预案内容应包括以下5个方面的内容:(1)信息反馈-通知业主、设计与监理等相关单位,组织专题讨论会;(2)人员配备1小时内监控量测人员到位,24小时现场值班,监控量测项目技术专家组提供指导;(3)监控量测工作-根据需要增设测点,对已有监控量测项目,加密监控量测频率;(4)成果报告提交监控量测数据报表,提交监控量测数据曲线分析;(5)技术支持参加专题讨论会,提交专题分析报告。12 监测工作制度和质量保证措施12。1监测工作管理制度 1、项目部所有人员必须严格执行项目部制定的各项管理规定,遵守岗位责任制。 2、项目部下属各部门之间必须加强团结、互相配合,提高办事工作效率,以促进监测工作的顺利进行。 3、监测人员在监测工作过程中必须服从项目部及项目组的工作分工与安排,认真做好各项目的监测任务,按