收藏 分销(赏)

公开课《倒数的认识》教学设计资料.doc

上传人:快乐****生活 文档编号:3918634 上传时间:2024-07-23 格式:DOC 页数:6 大小:93.50KB
下载 相关 举报
公开课《倒数的认识》教学设计资料.doc_第1页
第1页 / 共6页
公开课《倒数的认识》教学设计资料.doc_第2页
第2页 / 共6页
公开课《倒数的认识》教学设计资料.doc_第3页
第3页 / 共6页
公开课《倒数的认识》教学设计资料.doc_第4页
第4页 / 共6页
公开课《倒数的认识》教学设计资料.doc_第5页
第5页 / 共6页
点击查看更多>>
资源描述

1、公开课倒数的认识教学设计精品文档倒数的认识教学设计教学目标:1、使学生理解倒数的意义,掌握求一个数的倒数的方法。2、培养学生观察、归纳、推理和概括的能力。3、培养学生严谨好学的学习态度。重点难点:重点:理解倒数的意义。难点:掌握求倒数的方法。教学过程:一、创设情境1、创设问题情境,确定研究主题师:在以前的学习过程中,天天与数打交道,并且总结出关于数的运算的一些非常重要的规律,比如:一个数和1相乘还得原数;一个数和0相乘结果还是0;一个不是0的数除以它本身结果得1;这些运算中都有着非常稳定的规律,说明两个数的关系比较稳定。今天我们就来继续研究两个数的关系。出示: 请大家思考:每组中的两个数有怎样

2、的关系?(生交流汇报)生1:每组中都是一个真分数和一个假分数。生2:两个数的分子和分母的位置正好颠倒了。生3:它们的乘积都是1。师:看来大家已经透过表面现象发现了两个数的本质关系,即乘积都是1。请大家逐个验证一下。2、学生举例,丰富体验。师:请大家自己举出这样的例子。生:3、提炼概念。师:通过刚才的研究,具有这种关系的数叫互为倒数。谁来具体说一说什么样的两个数叫做互为倒数?(根据学生的回答出示:乘积是1的两个数叫互为倒数。)二、加深理解师:乘积是1的两个数叫互为倒数,在这个概念中你认为哪个词比较关键?为什么?自己思考后再和小组的同学交流。(小组交流后汇报)组1:“互为”非常关键。师:“互为”是

3、什么意思?组1:“互为”是说一个数是另一个数的倒数,不能说某一个数是倒数。比如:中,不能说是倒数,应该说是的倒数,即要说清楚谁是谁的倒数。师:还可以怎么说?组1:是的倒数。组2:我们组认为“两个”这个词非常关键,必须是两个数。师:,成倒数关系吗?组2:不成,因为我们研究的是两个数的关系,多了不行。组3:我们组认为“乘积是1”非常关键。如果乘积不是1的两个数就不能称为“互为倒数”。师:通过刚才的交流,大家已经找到了在这个概念中特别关键的部分,那就是“乘积是1”、“两个数”、“互为”。师:老师给大家提一个问题:概念中的“两个数”有可能是两个怎样的数?你能举例说明吗?再次小组讨论。组4:有可能是两个

4、分数,也有可能是一个整数和一个小数,或者整数和分数,只要乘积是1就行。三、探究方法1、探究找一个数的倒数的方法。(1) 师:刚才同学们都举出了许多倒数的例子。现在老师来考考你们,看看谁能很快的找出互为倒数的两个数,并说说是怎样找的?出示例1。生汇报结果:生1:我找到了,和互为倒数,和互为倒数。我的方法是看这两个分数的分子和分母是不是颠倒了位置。生2:我有补充,和也互为倒数。我是看两个数的乘积是否为1。师:说说你的理由。生2:我们要判断两个数是否互为倒数,就要看它们是否符合倒数的概念,也就是两个数的乘积是否为1,因为和的乘积也是1,所以和也互为倒数。师:都回答的很好,看来你们对“倒数”理解得很透

5、彻。那你更喜欢哪种方法呢?生3:第一种方法,因为比较简便,一眼就可以判断。生4:我也喜欢第一种,因为它比较快。师小结:看来大家都喜欢用直接观察的方法来判断,也就是看这两个分数的分子和分母是不是交换了位置。(2) 师:同学们都会判断两个数是否互为倒数了吗?如果给你一个数,你能写出它的倒数吗?生齐说:能。师板书:生汇报方法:生1:我把分子、分母的位置交换一下,就写出了的倒数。师板书:师:你们的方法和他的一样吗?生齐答:一样。师:谁能写出2的倒数?并说说你的方法。生2:2的倒数是。我是先把2写成分数形式,再交换分子、分母的位置,就找出了2的倒数是。师:你真聪明!能灵活运用知识。在找整数的倒数时,我们

6、可以先把这个整数写成分数形式,再交换分子、分母的位置的方法找出这个整数的倒数。师板书:师:谁能说说0.3有没有倒数?有的话怎么写出它的倒数?生3:有倒数,和0.3的乘积等于1的那个数就是它的倒数。在找小数的倒数时,可以先将小数化成分数,然后交换分子、分母的位置找出这个小数的倒数。师板书:2、出示特例,深入理解。师:刚才我们找出了例1中互为倒数的两个数,还学会了找一个数的倒数的方法。请同学们看一看,例1中还有哪些数没有找到倒数?生:1和0。师:1和0有没有倒数?如果有,是多少呢?请同学们讨论一下。小组汇报:(1) 关于1的倒数。组1:我们认为1有倒数,并且1的倒数还是1。因为根据倒数的意义,所以

7、说1的倒数还是1。组2:我们也同意他们组的看法。我们采用了刚才学习的求整数的倒数的方法,把1写成分数形式,再交换分子、分母的位置,得到数还是1,所以说1的倒数是它本身。(2) 关于0的倒数。组3:我们组讨论的结果是:0没有倒数,因为0乘以任何数都得0,不可能得1,不符合倒数的定义。组4:我们组是这样想的:0可以写成的分数形式来找倒数,交换分子、分母的位置后,分子是1,分母就成了0,而分母不能为0,所以0没有倒数。师小结:看来同学们通过自己的努力,不仅能找到答案,还能解释原因。1和0这两个数的倒数比较特殊:1的倒数还是1,0没有倒数。四、应用知识1、 完成“做一做”。先独立完成,再全班交流订正。

8、2、 合作练习。同桌两人中的一人任意说一个数,另一个同学说出这个数的倒数,然后交换进行。3、 “练习六”第2题。 先让学生判断对错,并说出理由。对于第(4)题“一个数的倒数一定比这个数小”,可以让学生进一步探究:什么数的倒数一定比这个数小?什么数的倒数一定比这个数大?什么数的倒数等于这个数?使学生通过讨论明确:大于1的假分数的倒数一定比它本身小,真分数的倒数一定比它本身大,1的倒数是它本身。五、全课总结师总结:同学们这节课学得很好,不仅知道了什么是倒数,还找出了求一个数的倒数的方法:把一个数的分子、分母交换位置就可以得到这个数的倒数,并且发现了两个特殊的数:1的倒数是它本身,0没有倒数。希望同学们在以后的学习中,能坚持善于观察、勤于动脑的好习惯,掌握更多的数学知识。板书设计:倒数的认识 乘积是1的两个数互为倒数找倒数的方法:分数:分子、分母交换位置整数或小数:先化成分数,再交换分子、分母交换位置“1”的倒数是“1”,“0”没有倒数教学反思 课上我主要通过体验、研究、类推等活动,使学生理解倒数的意义。在活动中,我始终以学生为主体,鼓励他们独立总结出求倒数的方法,培养他们自主学习和发展创新的意识。收集于网络,如有侵权请联系管理员删除

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2025 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服