收藏 分销(赏)

七下(教师)变量之间的关系---提高试题教学资料.doc

上传人:天**** 文档编号:3916077 上传时间:2024-07-23 格式:DOC 页数:35 大小:778.50KB
下载 相关 举报
七下(教师)变量之间的关系---提高试题教学资料.doc_第1页
第1页 / 共35页
七下(教师)变量之间的关系---提高试题教学资料.doc_第2页
第2页 / 共35页
七下(教师)变量之间的关系---提高试题教学资料.doc_第3页
第3页 / 共35页
七下(教师)变量之间的关系---提高试题教学资料.doc_第4页
第4页 / 共35页
七下(教师)变量之间的关系---提高试题教学资料.doc_第5页
第5页 / 共35页
点击查看更多>>
资源描述

1、七下(教师)变量之间的关系 提高试题精品资料第 讲 变量之间的关系一、选择题1、(2013南通)小李与小陆从A地出发,骑自行车沿同一条路行驶到B地,他们离出发地的距离S(单位:km)和行驶时间t(单位:h)之间的函数关系的图象如图所示,根据图中提供的信息,有下列说法:(1)他们都行驶了20km;(2)小陆全程共用了1.5h;(3)小李与小陆相遇后,小李的速度小于小陆的速度;(4)小李在途中停留了0.5h其中正确的有()A.4个 B.3个 C.2个 D.1个分析:首先注意横纵坐标的表示意义,再观察图象可得他们都行驶了20km;小陆从0.5时出发,2时到达目的地,全程共用了:2-0.5=1.5h;

2、小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆到达目的地所用时间小于小李到达目的地所用时间,根据速度=路程时间可得小李的速度小于小陆的速度;小李出发0.5小时后停留了0.5小时,然后根据此信息分别对4种说法进行判断解:(1)根据图象的纵坐标可得:他们都行驶了20km,故原说法正确;(2)根据图象可得:小陆全程共用了:2-0.5=1.5h,故原说法正确;(3)根据图象可得:小李与小陆相遇后,他们距离目的地有相同的路程,但是小陆用1个小时到B地,小李用1.5个小时到B地,所以小李的速度小于小陆的速度,故原说法正确;(4)根据图象可得:表示小李的S-t图象从0.5时开始到1时结束,时间在增多

3、,而路程没有变化,说明此时在停留,停留了1-0.5=0.5小时,故原说法正确故选A2、(2012武汉)甲、乙两人在直线跑道上同起点、同终点、同方向匀速跑步500米,先到终点的人原地休息已知甲先出发2秒在跑步过程中,甲、乙两人的距离y(米)与乙出发的时间t(秒)之间的关系如图所示,给出以下结论:a=8;b=92;c=123其中正确的是() A. B.仅有 C.仅有 D.仅有分析:易得乙出发时,两人相距8m,除以时间2即为甲的速度;由于出现两人距离为0的情况,那么乙的速度较快乙100s跑完总路程500可得乙的速度,进而求得100s时两人相距的距离可得b的值,同法求得两人距离为0时,相应的时间,让两

4、人相距的距离除以甲的速度,再加上100即为c的值解:甲的速度为:82=4(米/秒);乙的速度为:500100=5(米/秒);b=5100-4(100+2)=92(米);5a-4(a+2)=0,解得a=8,c=100+924=123(秒),正确的有故选A3、巫溪某中学组织初一初二学生举行“四城同创”宣传活动,从学校坐车出发,先上坡到达A地后,宣传8分钟;然后下坡到B地宣传8分钟返回,行程情况如图若返回时,上、下坡速度仍保持不变,在A地仍要宣传8分钟,那么他们从B地返回学校用的时间是() A.45.2分钟B.48分钟C.46分钟D.33分钟分析:由图象可知校车在上坡时的速度为200米每分钟,长度为

5、3600米;下坡时的速度为500米每分钟,长度为6000米;又因为返回时上下坡速度不变,总路程相等,根据题意列出各段所用时间相加即可得出答案解:由上图可知,上坡的路程为3600米,速度为200米每分钟;下坡时的路程为6000米,速度为6000(46-18-82)=500米每分钟;由于返回时上下坡互换,变为上坡路程为6000米,所以所用时间为30分钟;停8分钟;下坡路程为3600米,所用时间是7.2分钟;故总时间为30+8+7.2=45.2分钟故选A5、如图在一次越野赛跑中,当小明跑了9千米时,小强跑了5千米,此后两人匀速跑的路程S(千米)和时间t(小时)的关系如图所示,则由图上的信息可知S1的

6、值为()A.21千米 B.29千米 C.15千米 D.18千米分析:根据图象设小明跑的路程S和时间t的关系式是S=at+9,设小强跑的路程S和时间t的关系式是S=kt+5,根据图象得出当t=1时s的值相等,代入求出a=k-4根据图象得出小明跑了3小时的路程和小强跑2小时的路程都是S1,代入求出k,即可求出S1解:小明开始跑了9千米,图象过(0,9),设小明跑的路程S和时间t的关系式是S=at+9,同理设小强跑的路程S和时间t的关系式是S=kt+5,根据图象可知,当t=1时s的值相等,代入得:a+9=k+5,a=k-4,即S=(k-4)x+9,s=kx+5,根据图形可知,小明跑了3小时的路程和小

7、强跑2小时的路程都是S1,把t=2和t=3分别代入得:2k+5=3(k-4)+9=S1,解得:k=8,k-4=4,即S1=2k+5=28+5=21(千米),故选A小高从家门口骑车去单位上班,先走平路到达A地,再上坡到达B地,最后下坡到达工作单位,所用的时间与路程的关系如图所示那么,小高上班时下坡的速度是()A.千米/分 B.2千米/分 C.1千米/分 D.13千米/分解:从图象可知:走下坡路用了12分钟-8分钟=4分钟,走的路程是4千米-2千米=2千米,即小高上班时下坡的速度是2千米4分钟=千米/分,故选A二、填空题1、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1,1,2

8、,3,5,8,13,请根据这组数的规律写出第10个数是 55答案:解:3=2+1;5=3+2;8=5+3;13=8+5;可以发现:从第三个数起,每一个数都等于它前面两个数的和则第8个数为13+8=21;第9个数为21+13=34;第10个数为34+21=55故答案为55分析:通过对题目中给出的数据进行分析可以发现:从第三个数起,每一个数都等于它前面两个数的和如13=8+5按照这个规律即可求出答案2、如图所示,表示的是某航空公司托运行李的费用y(元)与托运行李的质量x(千克)的关系,由图中可知行李的质量,只要不超过_千克,就可以免费托运免费托运即是y=0,所以只要利用待定系数法求出解析式,解方程

9、即可解:设一次函数的解析式为y=kx+b,由图象过点(30,300)和(50,900)得解之得,解析式为y=30x-600,当y=0时,x=20,即重量不超过20千克可免费故本题答案为:20三、解答题1、通过航空公司邮递物品时,通常需要交纳一定的航空运输费用下表表示了它们之间的关系:(1)按照下表填空:(2)上述哪些量在变化?自变量和因变量各是什么? 解:(1)根据所给表格可得:(2)上述过程,需邮递的货物价格和运输费在变化,需邮递的货物价格是自变量,运输费是因变量说明:本题的关键是找出列表格时需要的数据,数据在条件中是自变量在某个范围内,因变量始终都为一个数的形式出现,很有创造性2、如图7,

10、在边长为10cm的正方形的四个角上分别剪去大小相同的四个小等腰直角三角形。当三角形的直角边由小变大时,图中阴影部分的面积随之发生变化。(1)在这个变化过程中,自变量、因变量各是什么?(2)若小等腰直角三角形的直角边长为a cm,图中阴影部分的面积为s cm,请你写出s与a的关系式。(3)当a由1cm增加到5cm时,图中阴影部分的面积是怎样变化的解(1) 自变量:三角形的直角边a, 因变量:阴影部分面积为S(2)S与a的关系式为S=100-2a(0a5). (3) 减少3、某航空公司邮递物品时,通常需要交纳一定的航空运输费用,下表表示了它们之间的关系:(1)按照上表填空:(2)上述哪些量在变化,

11、自变量和因变量各是什么?(3)你能画出自变量和因变量关系的图象吗?解:(1)按表格填空:(2)运输费随邮递货物的价格变化而变化;邮递货物价格是自变量,运输费是因变量;(3)自变量和因变量关系图像如下图所示:某航空公司邮递物品时,通常需要交纳一定的航空运输费用,上表表示了它们之间的关系:需邮递的货物的价格运输费0.0030.004.2510.0170.005.7570.01及以上6.95(1)按照下表填空:需邮递的货物的价格15 4270 100运输费(2)上述哪些量在变化自变量和因变量各是什么?(3)你能画出自变量和因变量关系的图象吗?解 析(1)根据邮递货物的价格与运费的关系填表;(2)根据

12、自变量与因变量的概念解答;(3)根据自变量与因变量的值画出图象解 答解:(1)按表格填空:需邮递的货物的价格15 4270 100运输费4.25 5.759.79 6.99(2)运输费随邮递货物的价格变化而变化,邮递货物价格是自变量,运输费是因变量(3)4、意大利著名数学家斐波那契在研究兔子繁殖问题时,发现有这样一组数:1 ,1 ,2 ,3 ,5 ,8 ,13 ,现以这组数中的各个数作为正方形的长度构造正方形,再分别依次从左到右取2 个,3 个,4 个,5 个正方形拼成如下矩形并标记为、,相应矩形的周长如下表所示:若按此规律继续作矩形,则序号为的矩形周长是_.4664、意大利著名数学家斐波那契

13、在研究兔子繁殖问题时,发现有这样一组数:1,1,2,3,5,8,13,其中从第三个数起,每一个数都等于它前面两个数的和、现以这组数中的各个数作为正方形的边长值构造如下正方形:再分别依次从左到右取2个、3个、4个、5个正方形拼成如下长方形并记为、相应长方形的周长如下表所示:序号周长610xy仔细观察图形,上表中的x= 16,y= 26若按此规律继续作长方形,则序号为的长方形周长是178解 析解:由分析知:第1个长方形的周长为6=(1+2)2;第2个长方形的周长为10=(2+3)2;第3个长方形的周长为16=(3+5)2;第4个长方形的周长为26=(5+8)2;第5个长方形的周长为42=(8+13

14、)2;第6个长方形的周长为68=(13+21)2;第7个长方形的周长为110=(21+34)2;第8个长方形的周长为178=(34+55)2现以这组数中的各个数作为正方形的边长构造如下正方形。再分别一次从左到右取2个、3个、4个、5个正方形拼成如下矩形并记为1、2、3、4,相应矩形的周长如表所示,若按此规律继续作矩形,则序号为10的矩形周长是( )这组数的前11个数分别是1,1,2,3,5,8,13,21,34,55,89,记做ai 第一个矩形的长b11=a1+a2,宽b12=a1,周长S1=(a1+a2+a1)X2, 第二个矩形长为b21=a2+a3,宽b22=b11,周长S2=(a2+a3

15、+a1+a2)*2 归纳得到第N个矩形bn1=an+a(n+1),bn2=a(n-1)+an,Sn=(an+a(n+1)+a(n-1)+an)*2 则S10=(55+89+55+34)*2=466考查了学生通过特例分析从而归纳总结出一般结论的能力对于找规律的题目首先应找出哪些部分发生了变化,是按照什么规律变化的通过分析找到各部分的变化规律后直接利用规律求解5、某市规定如下用水收费标准:每户每月用水不超过6米3时,水费按每立方米a元收费;超过6米3时,不超过的部分每立方米仍按a元收费,超过的部分每立方米按b元收费该市某户今年3,4月份的用水量和水费如下表所示:月份用水量(米3)水费(元)357.

16、54927(1)求用户用水为x米3(x6)时的水费(用含x的代数式表示)(2)某用户某月交水费39元,这个月该用户用水多少立方米?解:(1)56,3月份用水量不超过6米3,则5a=7.5,解得:a=1.5,则根据4月份,得61.5+(9-6)b=27,解得:b=6,当x6时,水费为:61.5+6(x-6)=(6x-27)元;(2)61.5=939(元),这个月一定超过6米3,则61.5+6(x-6)=39,解得:x=11答:这个月该用户用水11立方米6、某市为了鼓励节约用水,对自来水的收费标准作了如下规定:每月每户用水不超过10吨的部分,按0.45元/吨收费;超过10吨而不超过20吨的部分按0

17、.80元/吨收费;超过20吨的部分按1.5元/吨收费。现已知李老师家某月缴水费14元,则李老师家这个月用水多少吨?解:4.5+814设李老师家这个月用水x吨。4.5+8+1.5(x-20)=14 x=21答:李老师家这个月用水x吨。(2015广安)为了贯彻落实市委市府提出的“精准扶贫”精神某校特制定了一系列关于帮扶A、B两贫困村的计划现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求

18、这15辆车中大小货车各多少辆? (2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用解:(1)设大货车用x辆,小货车用y辆,根据题意得:x+y1512x+8y152解得:x8y7 大货车用8辆,小货车用7辆(2)y=800x+解得:x5,又0x10,5x10且为整数,y=100x+9400,k=1000,y随x的增大而增大,当x=5时,y最+900(8-x)+400(10-x)+6007-(10-x)=100x

19、+9400(0x10,且x为整数)(3)由题意得:12x+8(10-x)100,最小值为y=1005+9400=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元分析:(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)

20、辆,根点评:本题考查了一次函数的应用,二元一次方程组的应用关键是根据题意,得出安排各地的大、小货车数与前往B村的大货车数x的关系5、在我省成渝高速公路上,一辆轿车和一辆货车沿相同路线从A地到B地,所经过的路程y(千米)与时间x(小时)的函数关系图象如图所示,试根据图象,回答下列问题:(1)货车比轿车早出发 1小时,轿车追上货车时行驶了 150千米,A地到B地的距离为 300千米(2)轿车追上货车需多少时间?(3)轿车比货车早到多少时间?分析:观察图象可得到(1)的答案;两车相遇是在150千米处,利用比例线段,可知K是中点,再减去1小时,可算出所需的时间;在CFD中仍使用比例线段,可求出CF,那

21、么就可求出EF解:(1)根据图象依次填:1,150,300(2)根据图象提供信息,可知点M为ON的中点,MKNE,OK=OE=2.5,CK=OK-OC=1.5即轿车追上货车需1.5小时(3)根据图象提供信息,可知M为CD中点,且MKDF,CF=2CK=3OF=OC+CF=4EF=OE-OF=1即轿车比货车早到1小时如图,在矩形 ABCD中,AB10cm,BC8cm点P从A出发,沿ABCD路线运动,到D停止;点Q从D出发,沿 DCBA路线运动,到A停止若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒bcm,点Q的速度变为每秒d

22、cm图是点P出发x秒后APD的面积S1(cm2)与x(秒)的函数关系图象;图是点Q出发x秒后AQD的面积S2(cm2)与x(秒)的函数关系图象(1)参照图象,求b、图中c及d的值;(2)连接PQ,当PQ平分矩形ABCD的面积时,运动时间x的值为;(3)当两点改变速度后,设点P、Q在运动线路上相距的路程为y(cm),求y(cm)与运动时间x(秒)之间的函数关系式,并写出自变量x的取值范围;(4)若点P、点Q在运动路线上相距的路程为25cm,求x的值答案(1)b2(厘米/秒),c17(秒),d1(厘米/秒);(2)或;(3)当6x时,y3x28;当x17时,y3x28;当17x22时,yx6;(4

23、)1或19试题分析:(1)观察图1和2,得(平方厘米)(秒)b=(厘米/秒)c=8+=17(秒)依题意得(22-6)d=28-12解得d=1(厘米/秒);(2)由题意可得,当0x5时,假设(x+2x)8=(10-2x)+(10-x)8则x=(符合题意)当5x13时,由图可知,没有符合的解当13x22时, +13=(符合题意);(3)当6x时,y3x28;当x17时,y3x28;当17x22时,yx6;(4)当点Q出发17秒时,点P到达点D停止运动,点Q还需运动2秒,即共运动19秒时,可使P、Q这两点在运动路线上相距的路程为25cm点Q出发1s,则点P,Q相距25cm,设点Q出发x秒,点P、点Q

24、相距25cm,则2x+x=28-25,解得x=1当点Q出发1或19秒时,点P、点Q在运动路线上相距的路程为25cm为了贯彻落实市委市府提出的“精准扶贫”精神某校特制定了一系列关于帮扶A、B两贫困村的计划现决定从某地运送152箱鱼苗到A、B两村养殖,若用大小货车共15辆,则恰好能一次性运完这批鱼苗,已知这两种大小货车的载货能力分别为12箱/辆和8箱/辆,其运往A、B两村的运费如下表:目的地车型A村(元/辆)B村(元/辆)大货车800900小货车400600(1)求这15辆车中大小货车各多少辆?(2)现安排其中10辆货车前往A村,其余货车前往B村,设前往A村的大货车为x辆,前往A、B两村总费用为y

25、元,试求出y与x的函数解析式(3)在(2)的条件下,若运往A村的鱼苗不少于100箱,请你写出使总费用最少的货车调配方案,并求出最少费用考点:一次函数的应用分析:(1)设大货车用x辆,小货车用y辆,根据大、小两种货车共15辆,运输152箱鱼苗,列方程组求解;(2)设前往A村的大货车为x辆,则前往B村的大货车为(8-x)辆,前往A村的小货车为(10-x)辆,前往B村的小货车为7-(10-x)辆,根据表格所给运费,求出y与x的函数关系式;(3)结合已知条件,求x的取值范围,由(2)的函数关系式求使总运费最少的货车调配方案解:(1)设大货车用x辆,小货车用y辆,根据题意得:x+y1512x+8y152

26、解得:x8y7大货车用8辆,小货车用7辆(2)y=800x+900(8-x)+400(10-x)+6007-(10-x)=100x+9400(3x8,且x为整数)(3)由题意得:12x+8(10-x)100,解得:x5,又3x8,5x8且为整数,y=100x+9400,k=1000,y随x的增大而增大,当x=5时,y最小,最小值为y=1005+9400=9900(元)答:使总运费最少的调配方案是:5辆大货车、5辆小货车前往A村;3辆大货车、2辆小货车前往B村最少运费为9900元10、如图,ABC内部有若干个点,用这些点以及ABC的顶点A,B,C把原三角形分割成一些三角形(互相不重叠)(1)填写

27、右表:(2)如果用y表示内部有n个点时,ABC被分割成的三角形的个数,试写出y与n的关系式;(3)原ABC能否被分割成2008个三角形?若能,求此时ABC内部有多少个点?若不能,请说明理由分析:(1)观察图形,不难发现:内部每多一个点,则多2个三角形;(2)根据(1)的发现,则易写出y=3+2(n-1);(3)根据(2)的结论,列方程求解解:(1);(2)y=3+2(n-1)=2n+1;(3)根据(2)的结论,则知y一定是奇数,故原ABC不能被分割成2008个三角形11、如图,正方形ABCD内部有若干个点,用这些点以及正方形ABCD的顶点A、B、C、D把,原正方形分割成一些三角形(互相不重叠)

28、:(1)填写下表:(2)原正方形能否被分割成2004个三角形?若能,求此时正方形ABCD内部有多少个点?若不能,请说明理由解(1)图表从左至右依次填入:8,10,2n+2;(2)能理由如下:由(1)知2n+2=2004,解得n=1001,?此时正方形ABCD内部有1001个点12、图中折线ABC表示从甲地向乙地打长途电话时所需付的电话费y(元)与通话时间t(分钟)之间的关系图像(1)从图像知,通话2分钟需付的电话费是元;(2)当t3时求出该图像的解析式(写出求解过程);(3)通话7分钟需付的电话费是多少元?(1)2.4;(2);(3)8.4试题分析:(1)直接观察图象即可得到结果;(2)设直线

29、BC的解析式为y=kt+b,由图象过(3,2.4)和(5,5.4),即可根据待定系数法求解;(3)把代入(2)中的函数关系式求解即可.解(1)由图可得通话2分钟需付的电话费是2.4元;(2)设直线BC的解析式为y=kt+b,因为图象过(3,2.4)和(5,5.4),则解得所以解析式为;(3)当时,答:通话7分钟需付的电话费是8.4元一个安装了两个进水管和一个出水管的容器,每分钟的进水量和出水量是两个常数,且两个进水管的进水速度相同. 进水管和出水管的进出水速度如图1所示,某时刻开始到6分钟(至少打开一个水管),该容器的水量y(单位:升)与时间x(单位:分)如图2所示.。(1)试判断0到1分、1

30、分到4分、4分到6分这三个时间段的进水管和出水管打开的情况。(2)求4x6时,y随x变化的函数关系式.。(3)6分钟后,若同时打开两个水管,则10分钟时容器的水量是多少升?解:(1) 0到1分,打开一个进水管, 打开一个出水管 1分到4分,两个进水管和一个出水管全部打开 4分到6分,打开两个进水管,关闭出水管。(2)当4x6时,函数图象过点(4,4)(6,8);设解析式为y=kx+b,依题意得:;解得。函数解析式为y=2x-4(3)若同时打开一个进水管,一个出水管,则10分钟时容器的水量是8+(-1)4=4升 ,若同时打开两个进水管,则10分钟时容器的水量是8+24=16升。7、某单位准备印制

31、一批书面材料,现有两个印刷厂可供选择,甲厂费用分为制版费和印刷费两部分,乙厂直接按印刷数量收取印刷费甲厂的印刷费用y(千元)与书面材料数量x(千份)的关系见下表:书面材料数量x(千份)0123456甲厂的印刷费用y(千元)11.522.533.54乙厂的印刷费用y(千元)与书面材料数量x(千份)的函数关系图象如图所示(1)请你直接写出甲厂的:制版费、印刷费用y与x的函数解析式和其书面材料印刷单价,并在图中坐标系中画出甲厂印刷费用y与x的函数图象(2)根据图象,试求出当x在什么范围内时乙厂比甲厂的印刷费用低?(3)现有一客户需要印8千份书面材料,想从甲、乙两厂中选择一家印刷费用低的厂家,如果甲厂

32、想把8千份书面材料的印制工作承揽下来,在不降低制版费的前提下,每份书面材料最少降低多少元? 解:(1)由表格可知,甲厂的制版费为1千元,y甲=x+1,证书单价为0.5元,图象如图所示:(2)当0x2时,设乙厂的印刷费用y(千元)与书面材料数量x(千份)的函数解析式为y乙=kx,由已知得2k=3,解得k=1.5,y乙=1.5x(0x2)当x2时,由图象可设y乙与x的函数关系式为y乙=kx+b,由已知得,2k+b36k+b4,解得kby乙=x+(x2)解方程组yx+1y1.5x,得x1y1.5解方程组yx+1yx+,得x6y4两函数的交点坐标为(1,1.5)(6,4),观察图象,可得当0x1或x6

33、时,乙厂比甲厂的印刷费用低;(3)当x=8时,甲厂的印刷费用:y甲=8+1=5,乙厂的印刷费用:y乙=8+=4.5,甲厂比乙厂多花:5-4.5=0.5千元=500元如果甲厂想把8千份书面材料的印制工作承揽下来,在不降低制版费的前提下,设甲厂每份书面材料的印刷费用降低a元,由题意,有8000a500,解得a0.0625故甲厂每个材料印刷费最少降低0.0625元6、某航空公司规定,旅客乘机所携带行李的质量x(kg)与其运费y(元)之间是一次函数关系,其图象如图所示,求其解析式以及旅客最多可携带免费行李的最大重量。解:y与x的函数关系的解析式为:y=30x-600,旅客最多可携带免费行李的最大重量是

34、20kg。A、 B两辆汽车同时从相距330千米的甲、乙两地相向而行,s(千米)表示汽车与甲地的距离,t(分)表示汽车行驶的时间,如图,L1,L2分别表示两辆汽车的s与t的关系?(1)L1表示哪辆汽车到甲地的距离与行驶时间的关系?(2)汽车B的速度是多少?(3)求L1,L2分别表示的两辆汽车的s与t的关系式(4)2小时后,两车相距多少千米?(5)行驶多长时间后,A、B两车相遇?分析(1)直接根据函数图象的走向和题意可知L1表示汽车B到甲地的距离与行驶时间的关系;(2)由l1上60分钟处点的坐标可知路程和时间,从而求得速度;(3)先分别设出函数,利用函数图象上的已知点,使用待定系数法可求得函数解析

35、式;(4)结合(3)中函数图象求得t=120时s的值,做差即可求解;(5)求出函数图象的交点坐标即可求解解:(1)由函数图形可知汽车B是由乙地开往甲地,故L1表示汽车B到甲地的距离与行驶时间的关系;(2)(330-240)60=1.5千米/分;(3)设L1为s1=kt+b,把点(0,330),(60,240)代入得k=-1.5,b=330所以s1=-1.5t+330;设L2为s2=kt,把点(60,60)代入得k=1所以s2=t;(4)当t=120时,s1=150,s2=120150-120=30千米;所以2小时后,两车相距30千米;(5)当s1=s2时,-1.5t+330=t解得t=132即

36、行驶132分钟,A、B两车相遇李俊早晨从家里出发匀速步行去上学,走了一半的路程突然发现作业忘带他立即打电话通知妈妈送作业妈妈立即骑车按李俊上学的路线追赶,同时按原路李俊往回走迎接妈妈,2分钟后两人碰面,妈妈再骑车送李俊去学校(妈妈在整个过程中骑车速度不变,打电话时间忽略不计)李俊离家距离S(千米)与时间t(分钟)之间的函数关系如图1所示(1)李俊家距离学校 1千米(2)妈妈骑车的速度是多少?(3)如果李俊站在原地不动,等待妈妈送作业本,再由妈妈骑车送他去学校,和往常相比能否按时到校? 能(填:“能”或者“不能”),并在图2中画出李俊离家距离S和时间t的函数关系的图象 分析(1)由已知函数图象可

37、得李俊家距离学校多少千千米;(2)由已知和函数图象求妈妈骑车的速度可通过2分钟后两人碰面和妈妈再骑车送李俊去学校任选其中一段路程求解(3)按两种方案分别计算所用时间进行比较得出答案解:同时按原路李俊往回走迎接妈妈,故答案为:按原路(1)由函数图象得李俊家距离学校1千米,故答案为:1(2)由函数图象可得:妈妈骑车的速度为,1/3(8-6)=1/6(千米/分钟),答:妈妈骑车的速度是1/6千米/分钟 (3)由已知函数图象可知按时到校时间为12分钟,如果李俊站在原地不动,等待妈妈送作业本,再由妈妈骑车送他去学校所用的时间是:6+0.51/6+(1-0.5)1/6=12,所以能按时到校故答案为:能杭州

38、市水厂的水价调整与阶梯式水价改革方案已出台,自2010年9月1日(用水时间)起执行,为鼓励居民节约用水,对居民生活用水实行水费阶梯制(见表)“一户一表”用水量不超过17立方米超过17立方米且不超过30立方米的部分单价(元/立方米)2.403.35小芳家十月份用水x立方米(1)当x17时,小芳家这月付水费多少元?(2)若小芳家这月用水20立方米,应付水费多少元?(3)若小芳家这月付了水费60.9元,她家该月用水多少立方米?分析(1)让用水量乘以用水单价2.4即可;(2)应付水费=172.4+超过17的部分3.35;(3)易得该月用水超过17立方米,那么关系式为172.4+超过17的部分3.35=

39、60.9,把相关数值代入计算即可解:(1)当x17时,小芳家这月付水费2.40x元;(2)172.4+(20-17)3.35=40.8+10.05=50.85元;(3)设该月用水y立方米172.4+(y-17)3.35=60.9,3.35y=97.15y=29答:她家该月用水29立方米一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点.蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛的半径是_米,a=_(

40、2)当t2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:蚂蚁停下来吃食物的地方,离出发点的距离.蚂蚁返回O的时间(注:圆周率的值取3)25.(1)4,8;(2)s=2t(3)沿途只有一处食物,蚂蚁只能在BO段吃食物11821,蚂蚁从B爬1分钟找到食物4122(米)蚂蚁停下来吃食的地方距出发点2米221(分钟)11+112(分钟)蚂蚁返回O的时间为12分钟(1)由图可知,花坛的半径是4米, 蚂蚁的速度为42=2米/分, a=(4+4)2=(4+43)2=8; 故答案为:4,8; (2)设s=

41、kt(k0), 函数图象经过点(2,4), 2k=4, 解得k=2, s=2t; (3)沿途只有一处食物, 蚂蚁只能在BO段吃食物,11-8-2=1, 蚂蚁从B爬1分钟找到食物, 4-12=2(米), 蚂蚁停下来吃食的地方距出发点2米, 22=1(分钟), 11+1=12(分钟), 蚂蚁返回O的时间为12分钟一只蚂蚁在一个半圆形的花坛的周边寻找食物,如图1,蚂蚁从圆心O出发,按图中箭头所示的方向,依次匀速爬完下列三条线路:(1)线段OA、(2)半圆弧AB、(3)线段BO后,回到出发点蚂蚁离出发点的距离S(蚂蚁所在位置与O点之间线段的长度)与时间t之间的图象如图2所示,问:(1)请直接写出:花坛

42、的半径是 米,a= (2)当t2时,求s与t之间的关系式;(3)若沿途只有一处有食物,蚂蚁在寻找到食物后停下来吃了2分钟,并知蚂蚁在吃食物的前后,始终保持爬行且爬行速度不变,请你求出:蚂蚁停下来吃食物的地方,离出发点的距离蚂蚁返回O的时间(注:圆周率的值取3)考点:动点问题的函数图象分析:(1)根据圆上的点到圆心的距离等于半径可知S开始不变时的值即为花坛的半径,然后求出蚂蚁的速度,再根据时间=路程速度计算即可求出a;(2)设s=kt(k0),然后利用待定系数法求正比例函数解析式解答;(3)根据蚂蚁吃食时离出发点的距离不变判断出蚂蚁在BO段,再求出蚂蚁从B爬到吃食时的时间,然后列式计算即可得解;

43、求出蚂蚁吃完食后爬到点O的时间,再加上11计算即可得解解答:解:(1)由图可知,花坛的半径是4米,蚂蚁的速度为42=2米/分,a=(4+4)2=(4+43)2=8;故答案为:4,8;(2)设s=kt(k0),函数图象经过点(2,4),2k=4,解得k=2,s=2t;(3)沿途只有一处食物,蚂蚁只能在BO段吃食物,11-8-2=1,蚂蚁从B爬1分钟找到食物,4-12=2(米),蚂蚁停下来吃食的地方距出发点2米,22=1(分钟),11+1=12(分钟),蚂蚁返回O的时间为12分钟点评:本题考查了动点问题的函数图象,主要利用了圆的定义,待定系数法求正比例函数解析式,路程、速度、时间三者之间的关系,读

44、懂题目信息,理解蚂蚁的爬行轨迹是解题的关键为了贯彻落实国家教育部制订均衡教育规划,某校计划拆除部分旧校舍建设新校舍,使得校舍面积增加30%已知建设新校舍的面积为被拆除的旧校舍面积的4倍,现有校舍面积为20000m2,求应拆除多少旧校舍?新建校舍为多少m2?解:设拆除旧校舍为xm2,新建校舍为ym2,则得方程组:完成上述填空,并求出x,y的值分析:设拆除旧校舍为xm2,新建校舍为ym2,根据建设新校舍的面积为被拆除的旧校舍面积的4倍,现有校舍面积为20000m2,列方程组求解解:设拆除旧校舍为xm2,新建校舍为ym2,由题意得,y=4x20000-x+y=20000(1+30%)解得:x=200y=800答:拆除旧校舍为200m2,新建校舍为800m2故答案为:4x,30%如图,已知公路上有A、B、C三个汽车站,A、C两站相距280km,一辆汽车上午8点从离A站40km的P地出发,以80km/h的速

展开阅读全文
部分上传会员的收益排行 01、路***(¥15400+),02、曲****(¥15300+),
03、wei****016(¥13200+),04、大***流(¥12600+),
05、Fis****915(¥4200+),06、h****i(¥4100+),
07、Q**(¥3400+),08、自******点(¥2400+),
09、h*****x(¥1400+),10、c****e(¥1100+),
11、be*****ha(¥800+),12、13********8(¥800+)。
相似文档                                   自信AI助手自信AI助手
百度文库年卡

猜你喜欢                                   自信AI导航自信AI导航
搜索标签

当前位置:首页 > 教育专区 > 其他

移动网页_全站_页脚广告1

关于我们      便捷服务       自信AI       AI导航        获赠5币

©2010-2024 宁波自信网络信息技术有限公司  版权所有

客服电话:4008-655-100  投诉/维权电话:4009-655-100

gongan.png浙公网安备33021202000488号   

icp.png浙ICP备2021020529号-1  |  浙B2-20240490  

关注我们 :gzh.png    weibo.png    LOFTER.png 

客服