资源描述
#include ”HT66FU70A.h"
#define uchar unsigned char
#define uint unsigned int
#define led _pc2 //led
//*********************************************NRF24L01端口宏定义*************************************
//#define MOSI _pa3 //MOSI
//#define SCK _pa4 //SCK
//#define CE _pa5 //CE
//#define CSN _pa6 //CSN
//#define MISO _pa1 //MISO输入
//#define IRQ _pa7 //IRQ输入
//*********************************************NRF24L01*************************************
#define TX_ADR_WIDTH 5 // 5 字节宽度的发射地址
#define RX_ADR_WIDTH 5 // 5 字节宽度的接收地址
#define TX_PLOAD_WIDTH 1 // 数据通道有效数据宽度
#define RX_PLOAD_WIDTH 1 // 数据通道有效数据宽度
uchar TX_ADDRESS[TX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //发送地址
uchar RX_ADDRESS[RX_ADR_WIDTH]= {0x34,0x43,0x10,0x10,0x01}; //接收地址
uchar gs[10]={0x00,0x01,0x80,0x01,0x00,0x02,0x80,0x02,0x00,0x03}; //低字节高字节 占空比数组 1,83。3,66。7,50,33。3
//***************************************NRF24L01相关命令的宏定义*******************************************************
#define READ_REG 0x00 // 读寄存器命令
#define WRITE_REG 0x20 // 写寄存器命令
#define RD_RX_PLOAD 0x61 // 读取接收数据命令
#define WR_TX_PLOAD 0xA0 // 写待发数据指令
#define FLUSH_TX 0xE1 // 冲洗发送FIFO指令
#define FLUSH_RX 0xE2 // 冲洗接收FIFO指令
#define REUSE_TX_PL 0xE3 // 定义重复装载数据命令
#define NOP 0xFF // ??
//*************************************SPI(nRF24L01)相关地址的宏定义****************************************************
#define CONFIG 0x00
#define EN_AA 0x01
#define EN_RXADDR 0x02
#define SETUP_AW 0x03
#define SETUP_RETR 0x04
#define RF_CH 0x05
#define RF_SETUP 0x06
#define STATUS 0x07
#define OBSERVE_TX 0x08
#define CD 0x09
#define RX_ADDR_P0 0x0A
#define RX_ADDR_P1 0x0B
#define RX_ADDR_P2 0x0C
#define RX_ADDR_P3 0x0D
#define RX_ADDR_P4 0x0E
#define RX_ADDR_P5 0x0F
#define TX_ADDR 0x10
#define RX_PW_P0 0x11
#define RX_PW_P1 0x12
#define RX_PW_P2 0x13
#define RX_PW_P3 0x14
#define RX_PW_P4 0x15
#define RX_PW_P5 0x16
#define FIFO_STATUS 0x17
//uuchar TxBuf[2]={};
uchar RxBuf[1];
//**************************************
uchar sta;
uchar m=3;
unsigned char IN1,IN2,IN3,IN4;//对应芯片如向前1000
void pwn_1();
void car_qian();
void car_hou();
void car_zuo();
void car_you();
void car_stop();
void time_init();
void CAR_Q();
void CAR_H();
/************延迟函数ms************************/
void delay200ms(unsigned int x)
{
unsigned int i;
for(i=0;i〈x;i++)
{
GCC_DELAY(200000);
}
}
/**********小车控制函数***********************/
void car_qian()
{
_pcs2=0b00100000;//STM0 C5 pwm
_pcc5=0;
_pcpu5=1;
_pcs3=0b00000000;//STM0 C6 0
_pcc6=0;
_pc6=0;
}
void car_hou()
{
_pcs2=0b00000000;//STM0 C5 0
_pcc5=1;
_pcpu5=0;
_pcs3=0b00000001;//STM0 C6 pwm
_pcc6=0;
_pcpu6=1;
}
void car_zuo()
{
_pds0=0b00000001;//STM3 D0 pwm
_pdc0=0;
_pdpu=1;
_pds1=0b00000000;//STM3 D3 0
_pdc3=0;
_pd3=0;
}
void car_you()
{
_pds0=0b00000000;//STM3 D0 0
_pdc0=1;
_pdpu0=0;
_pds1=0b00010000;//STM D3 pwm
_pdc3=0;
_pdpu3=1;
}
void car_stop()
{
_pcs2=0x00;
_pcs3=0x00;
_pds0=0x00;
_pds1=0x00;
_pcc6=0;
_pc6=0;
_pcc5=1;
_pcpu5=0;
_pdc0=1;
_pdpu0=0;
_pdc3=0;
_pd3=0;
}
void car_clear() //清楚上次位移端口影响
{
_pcs2=0x00;
_pcs3=0x00;
_pds0=0x00;
_pds1=0x00;
GCC_DELAY(20);
}
//******pwm占空比********
void pwm_gs()
{
if(m>5){m=5;}
if(m〈1){m=1;}
switch(m)
{
case 1: {_tm0al = 0x00; _tm0ah = 0x01; _tm3al = 0x00; _tm3ah = 0x01;break;}
case 2: {_tm0al = 0x80; _tm0ah = 0x01; _tm3al = 0x80; _tm3ah = 0x01;break;}
case 3: {_tm0al = 0x00; _tm0ah = 0x02; _tm3al = 0x00; _tm3ah = 0x02;break;}
case 4: {_tm0al = 0x80; _tm0ah = 0x02; _tm3al = 0x80; _tm3ah = 0x02;break;}
case 5: {_tm0al = 0x00; _tm0ah = 0x03; _tm3al = 0x00; _tm3ah = 0x03;break;}
}
GCC_DELAY(10);
time_init();
}
void Mcu_init()
{
_pas1=0x00;
_pac3=0;
_pas2=0x00;
_pac4=0;
_pas2=0x00;
_pac5=0;
_pas3=0x00;
_pac6=0; //pa3—6 配置为输出io口无线模块配置
_pas0=0x00;
_pac1=1;
_papu1=1;
_pas3=0x00;
_pac7=1;
_papu7=1;
_pcs1=0x00;
_pcc2=0;
}
//写一个字节到nrf24l01,同时从nrf24l01读出一个字节
//*************************************************************************************
uchar SPI_RW(uchar data)
{
uchar i,temp=0;
for(i=0;i〈8;i++) // output 8-bit
{
if((data & 0x80)==0x80)
{
_pa3=1; // output ’uuchar’, MSB to MOSI
}
else
{
_pa3=0;
}
data = (data 〈〈 1); // shift next bit into MSB.。
temp〈〈=1;
_pa4=1; // Set SCK high..
if(_pa1==1)temp++; // capture current MISO bit xiugai pa1
_pa4=0; // ..then set SCK low again
}
return(temp); // return read uuchar
}
//从reg寄存器读一个字节
//*************************************************************************************
uchar SPI_Read(uchar reg)
{
uchar reg_val;
_pa6=0; // CSN low, initialize SPI communication。..
SPI_RW(reg); // Select register to read from.。
reg_val = SPI_RW(0); // 。。then read registervalue
_pa6=1; // CSN high, terminate SPI communication
return(reg_val); // return register value
}
//写数据到reg寄存器
//*************************************************************************************
uchar SPI_RW_Reg(uchar reg, uchar value)
{
uchar status1;
_pa6=0; // CSN low, init SPI transaction
status1 = SPI_RW(reg); // select register
SPI_RW(value); // 。。and write value to it。.
_pa6=1; // CSN high again
return(status1); // return nRF24L01 status uuchar
}
//用于读数据
//*************************************************************************************
uchar SPI_Read_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uchar status2,uuchar_ctr;
_pa6=0; // Set CSN low, init SPI tranaction
status2 = SPI_RW(reg); // Select register to write to and read status uuchar
for(uuchar_ctr=0;uuchar_ctr<uchars;uuchar_ctr++)
{
pBuf[uuchar_ctr] = SPI_RW(0);
}
_pa6=1;
return(status2); // return nRF24L01 status uuchar
}
//用于写数据
//*************************************************************************************
uchar SPI_Write_Buf(uchar reg, uchar *pBuf, uchar uchars)
{
uchar status1,uuchar_ctr;
_pa6=0; //SPI使能
status1 = SPI_RW(reg);
for(uuchar_ctr=0; uuchar_ctr〈uchars; uuchar_ctr++)
{
SPI_RW(*pBuf++);
}
_pa6=1; //关闭SPI
return(status1);
}
void SetRX_Mode(void)
{
_pa5=0;
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0f); // IRQ收发完成中断响应,16位CRC,主接收
_pa5=1;
GCC_DELAY(2000); //注意不能太小
}
uchar nRF24L01_RxPacket(uchar* rx_buf)
{
uchar revale=0;
sta=SPI_Read(STATUS); // 读取状态寄存其来判断数据接收状况
if(sta&0x40) // 判断是否接收到数据
{
_pa5=0; //SPI使能
SPI_Read_Buf(RD_RX_PLOAD,rx_buf,TX_PLOAD_WIDTH); // read receive payload fromRX_FIFO buffer
revale =1; //读取数据完成标志
}
SPI_RW_Reg(WRITE_REG+STATUS,sta); //接收到数据后RX_DR,TX_DS,MAX_PT都置高为1,通过写1来清楚中断标志
return revale;
}
//发送tx—buf中数据
/*************************************************************************************
void nRF24L01_TxPacket(uuchar *tx_buf)
{
CE=0 ;
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, TX_ADDRESS, TX_ADR_WIDTH);
SPI_Write_Buf(WR_TX_PLOAD, tx_buf, TX_PLOAD_WIDTH);
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0e);
CE=1;
delay_us(100);
}
*************************************************************************************/
void init_NRF24L01(void)
{
GCC_DELAY(250);
_pa5=0 ; // chip enable
_pa6=1; // Spi disable
_pa4=0; // Spi clock line init high
SPI_Write_Buf(WRITE_REG + TX_ADDR, TX_ADDRESS, TX_ADR_WIDTH); // 写本地地址
SPI_Write_Buf(WRITE_REG + RX_ADDR_P0, RX_ADDRESS, RX_ADR_WIDTH); // 写接收端地址
SPI_RW_Reg(WRITE_REG + EN_AA, 0x01); // 频道0自动 ACK应答允许
SPI_RW_Reg(WRITE_REG + EN_RXADDR, 0x01); // 允许接收地址只有频道0,如果需要多频道可以参考Page21
SPI_RW_Reg(WRITE_REG + RF_CH, 0); // 设置信道工作为2。4GHZ,收发必须一致
SPI_RW_Reg(WRITE_REG + RX_PW_P0, RX_PLOAD_WIDTH); //设置接收数据长度,本次设置为32字节
SPI_RW_Reg(WRITE_REG + RF_SETUP, 0x07); //设置发射速率为1MHZ,发射功率为最大值0dB
SPI_RW_Reg(WRITE_REG + CONFIG, 0x0E); // IRQ收发完成中断响应,16位CRC ,主接收
}
void time_init(void)
{
//保持对应的I/O口的原来功能
_phs0 = 0;
_tm0c0 = 0x00; //增强型TM(查找TM1C0寄存器),4分频
// _tm0dl = 0x00;
// _tm0dh = 0x00;
_tm0c0=0b10010110; //7.784M 停止不分频关闭100 512P高三位 本来应该8m实验测得7。784M
_tm0c1=0b10101000; //工作模式输出模式高有效同相向上计数(p匹配双pwm输出模式)
// _tm0c2=0b10101000; //工作模式输出模式高有效同相边沿对齐
// _tm0al = 0x80;//a
// _tm0ah = 0x02;//a
_tm0c0 &=~(1 〈< 7); //运行定时器
_tm0c0 |= (1 〈< 3); //计数器On
/*_tm0c0 |= (1 〈〈 3); //计数器On*/
_tm3c0 = 0x00; //增强型TM(查找TM3C0寄存器)
// _tm3dl = 0x00;
// _tm3dh = 0x00;
_tm3c0=0b10010110; //7.784M 停止不分频关闭100 512P高三位 本来应该8m实验测得7。784M
_tm3c1=0b10101000; //工作模式输出模式高有效同相向上计数(p匹配双pwm输出模式)
// _tm3al = 0x80;//a
// _tm3ah = 0x02;//a
_tm3c0 &=~(1 〈〈 7); //运行定时器
_tm3c0 |= (1 〈〈 3); //计数器On
/* 计数值的上限是3FFH,这里取计数初值为356H,即每隔
(3FFH—356H)=169x1/(fsys/4)的时间触发一次中断*/
_mf0e = 1; //允许多功能中断0,多功能中断包括TM中断(INTC1寄存器bit1位)
_emi = 1;//开总中断
}
void main()
{
uchar num,zuo,you,qian,hou;
num=0;zuo=0;you=0;qian=0;hou=0;
Mcu_init();
init_NRF24L01();
SetRX_Mode();
//设置看门狗除能(使能应为:0b01010011)
_wdtc = 0b10101011;
_tm0al = 0x00;//a
_tm0ah = 0x02;//a
_tm3al = 0x00;//a
_tm3ah = 0x02;//a
time_init(); //定时器初始化
_emi = 1; //开总中断
while(1)
{
SetRX_Mode();
nRF24L01_RxPacket(RxBuf);
GCC_DELAY(10000);
if(nRF24L01_RxPacket(RxBuf))
{
num++;
if(RxBuf[0]==0x0a) {zuo++;}
else if(RxBuf[0]==0x0b) {you++;}
else if(RxBuf[0]==0x0c) {qian++;}
else if(RxBuf[0]==0x0d) {hou++;}
else if(RxBuf[0]==0x0e) {m++;pwm_gs();}
else if(RxBuf[0]==0x0f) {m—-;pwm_gs();}
if(num>=20)
{
num=0;
if(zuo>=11) {zuo=0; car_zuo(); delay200ms(10);car_clear();car_stop();}
if(you〉=11) {you=0; car_you(); delay200ms(10);car_clear();car_stop();}
if(qian>=11) {qian=0; car_qian();delay200ms(10);car_clear();car_stop();}
if(hou>=11) {hou=0; car_hou(); delay200ms(10);car_clear();car_stop();}
}
}
else
{
led=0;
}
}
}
展开阅读全文