资源描述
十字相乘法内容和练习题
精品文档
因式分解的——十字相乘法
关于x2+(p+q)x+pq这类二次三项式的因式分解,这类式子的特点是:二次项系数为1,常数项是两个数之积,一次项系数是常数项的两个因数之和。
因此,我们得到x2+(p+q)x + pq=(x+p)(x+q).
练习:下列各式因式分解
1.- x2+2 x+15 2.(x+y)2-8(x+y)+48;
3.x4-7x2+18; 4.x2-5xy+6y2。
对于二次项系数不是1的二次三项式如何因式分解呢?这节课就来讨论这个问题,即把某些形如ax2+bx+c的二次三项式因式分解。
例1 把2x2-7x+3因式分解。
分析:先分解二次项系数,分别写在十字交叉线的左上角和左下角,再分解常数项,分别写在十字交叉线的右上角和右下角,然后交叉相乘,求代数和,使其等于一次项系数。
分解二次项系数(只取正因数):
2=1×2=2×1;
分解常数项:
3=1×3=3×1=(-3)×(-1)=(-1)×(-3)。
用画十字交叉线方法表示下列四种情况:
1 1 1 3 1 -1 1 -3
2 × 3 2 × 1 2 × -3 2 × -1
1×3+2×1 1×1+2×3 1×(-3)+2×(-1) 1×(-1)+2×(-3)
=5 =7 = -5 =-7
经过观察,第四种情况是正确有。这是因为交叉相乘后,两项代数和恰等于一次项系数-7。
解 2x2-7x+3=(x-3)(2x-1)。
一般地,对于二次三项式ax2+bx+c(a≠0),如果二次项系数a可以分解成两个因数之积,即a=a1a2,常数项c可以分解成两个因数之积,即c=c1c2,把a1,a2,c1,c2排列如下:
a1 c1
a2 × c2
a1c2 + a2c1
按斜线交叉相乘,再相加,得到a1c2+a2c1,若它正好等于二次三项式ax2+bx+c的一次项系数b,即a1c2+a2c1=b,那么二次三项式就可以分解为两个因式a1x+c1与a2x+c2之积,即
ax2+bx+c=(a1x+c1)(a2x+c2)。
像这种借助开十字交叉线分解系数,从而帮助我们把二次三项式分解因式的方法,通常叫做十字相乘法。
例2 把6x2-7x-5分解因式。
分析:按照例1的方法,分解二次项系数6及常数项-5,把它们分别排列,可有8种不同的排列方法,其中的一种
2 1
3 × -5
2×(-5)+3×1=-7
是正确的,因此原多项式可以用十字相乘法分解因式。
解 6x2-7x-5=(2x+1)(3x-5)。
指出:通过例1和例2可以看到,运用十字相乘法把一个二次项系数不是1的二次三项式因式分解,往往要经过多次观察,才能确定是否可以用十字相乘法分解因式。
对于二次项系数是1的二次三项式,也可以用十字相乘法分解因式,这时只需考虑如何把常数项分解因数。例如把x2+2x-15分解因式,十字相乘法是
1 -3
1 × 5
1×5+1×(-3)=2
所以x2+2x-15=(x-3)(x+5)。
例3 把5x2+6xy-8y2分解因式。
分析:这个多项式可以看作是关于x的二次三项式,把-8y2看作常数项,在分解二次项及常数项系数时,只需分解5与-8,用十字交叉线分解后,经过观察,选取合适的一组,即
1 2
5 × -4
1×(-4)+5×2=6
解 5x2+6xy-8y2=(x+2y)(5x-4y)。
指出:原式分解为两个关于x,y的一次式。
例4 把(x-y)(2x-2y-3)-2分解因式。
分析:这个多项式是两个因式之积与另一个因数之差的形式,只有先化简,进行多项式的乘法运算,把变形后的多项式再因式分解。
问:两个乘积的式子有什么特点,用什么方法进行多项式的乘法运算最简便?
答:第二个因式中的前两项如果提出公因式2,就变为2(x-y),它是第一个因式的二倍,然后把(x-y)看作一个整体进行乘法运算,可把原多项式变形为关于(x-y)的二次三项式,就可以用址字相乘法分解因式了。
解 (x-y)(2x-2y-3)-2
=(x-y)[2(x-y)-3]-2 1 -2
=2(x-y)2-3(x-y)-2 2 × +1
=[(x-y)-2][2(x-y)+1] 1×1+2×(-2)=-3
=(x-y-2)(2x-2y+1)。
指出:把(x-y)看作一个整体进行因式分解,这又是运用了数学中的“整体”思想方法。
练习1.
1.用十字相乘法因式分解:
(1)2x2-5x-12; (2)3x2-5x-2; (3)6x2-13x+5;
(4)7x2-19x-6; (5)12x2-13x+3; (6)4x2+24x+27。
2.把下列各式因式分解:
(1)6x2-13x+6y2; (2)8x2y2+6xy-35;
(3)18x2-21xy+5y2; (4)2(a+b)2+(a+b)(a-b)-6(a-b)2
小结
1.用十字相乘法把某些形如ax2+bx+c的二次三项式分解因式时,应注意以下问题:
(1)正确的十字相乘必须满足以下条件:
a1 c1
在式子 中,竖向的两个数必须满足关系a1a2=a,c1c2=c;在上式中,斜
a2 c2
向的两个数必须满足关系a1c2+a2c1=b,分解思路为“看两端,凑中间。”
(2)由十字相乘的图中的四个数写出分解后的两个一次因式时,图的上一行两个数中,a1是第一个因式中的一次项系数,c1是常数项;在下一行的两个数中,a2是第二个因式中的一次项的系数,c2是常数项。
(3)二次项系数a一般都把它看作是正数(如果是负数,则应提出负号,利用恒等变形把它转化为正数),只需把经分解在两个正的因数。
2.形如x2+px+q的某些二次三项式也可以用十字相乘法分解因式。
3.凡是可用代换的方法转化为二次三项式ax2+bx+c的多项式,有些也可以用十字相乘法分解因式,如例4。
练习2.
1.用十字相乘法分解因式:
(1)2x2+3x+1; (2)2y2+y-6; (3)6x2-13x+6;
(4)3a2-7a-6; (5)6x2-11xy+3y2; (6)4m2+8mn+3n2;
(7)10x2-21xy+2y2; (8)8m2-22mn+15n2。
2.把下列各式分解因式:
(1)4n2+4n-15; (2)6a2+a-35; (3)5x2-8x-13;
(4)4x2+15x+9; (5)15x2+x-2; (6)6y2+19y+10;
(7)20-9y-20y2; (8)7(x-1)2+4(x-1)(y+2)-20(y+2)2。
收集于网络,如有侵权请联系管理员删除
展开阅读全文